Communications in Mathematical Physics

, Volume 356, Issue 2, pp 451–500 | Cite as

Complexity of Quantum Impurity Problems

Article
  • 128 Downloads

Abstract

We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian \({H=H_0+H_{imp}}\), where H0 is quadratic in creation–annihilation operators and Himp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error \({2^{-b}}\) in time \({n^3 \exp{[O(b^3)]}}\). Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of \({\exp{[O(b^3)]}}\) fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H0. A key ingredient of our proof is Zolotarev’s rational approximation to the \({\sqrt{x}}\) function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson P.W.: Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Kondo J.: Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32(1), 37–49 (1964)ADSCrossRefGoogle Scholar
  3. 3.
    Wilson K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47(4), 773 (1975)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Kouwenhoven L., Glazman L.: Revival of the Kondo effect. Phys. World 14(1), 33 (2001)CrossRefGoogle Scholar
  5. 5.
    De Haas W.J., Van Den Berg G.J.: The electrical resistance of gold and silver at low temperatures. Physica 3(6), 440–449 (1936)ADSCrossRefGoogle Scholar
  6. 6.
    Georges A.: Strongly correlated electron materials: dynamical mean field theory and electronic structure. AIP Conf. Prod. 715(1), 3–74 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Kotliar G., Savrasov S., Haule K., Oudovenko V., Parcollet O., Marianetti C.: Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78(3), 865 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Bauer B., Wecker D., Millis A.J., Hastings M.B., Troyer M.: Hybrid quantum-classical approach to correlated materials. Phys. Rev. X 6, 031045 (2016)Google Scholar
  9. 9.
    Kreula J.M., García-Álvarez L., Lamata L., Clark S.R., Solano E., Jaksch D.: Few-qubit quantum-classical simulation of strongly correlated lattice fermions. EPJ Quantum Technol. 3, 11 (2016)CrossRefGoogle Scholar
  10. 10.
    Gharibian S., Huang Y., Landau Z., Shin S.W.: Quantum Hamiltonian complexity. Found. Trends Theor. Comput. Sci. 10(3), 159–282 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kitaev A.Yu., Shen A.H., Vyalyi M.N.: Classical and Quantum Computation. American Mathematical Society, Boston (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Schuch N., Verstraete F.: Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys. 5(10), 732–735 (2009)CrossRefGoogle Scholar
  13. 13.
    Bini D., Pan V.Y.: Computing matrix eigenvalues and polynomial zeros where the output is real. SIAM J. Comput. 27(4), 1099–1115 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Wiegmann P.B., Tsvelick A.M.: Exact solution of the Anderson model: I. J. Phys. C: Solid State Phys. 16(12), 2281 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    Kawakami N., Okiji A.: Exact expression of the ground-state energy for the symmetric Anderson model. Phys. Lett. A 86(9), 483–486 (1981)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Zolotarev E.: Application of elliptic functions to questions of functions deviating least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg 30(5), 1–59 (1877)Google Scholar
  17. 17.
    Brod D.J., Childs A.M.: The computational power of matchgates and the XY interaction on arbitrary graphs. Quantum Inf. Comput. 14(11-12), 901–916 (2014)MathSciNetGoogle Scholar
  18. 18.
    Kraus C., Cirac J.I.: Generalized Hartree–Fock theory for interacting fermions in lattices: numerical methods. New J. Phys. 12(11), 113004 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Landau Z., Vazirani U., Vidick T.: A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians. Nat. Phys. 11(7), 566–569 (2015)CrossRefGoogle Scholar
  20. 20.
    Aharonov, D., Naveh, T.: Quantum NP—A Survey. arXiv:quant-ph/0210077, (2002)
  21. 21.
    Terhal B.M., DiVincenzo D.P.: Classical simulation of noninteracting-fermion quantum circuits. Phys. Rev. A 65(3), 032325 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Bravyi S.: Lagrangian representation for fermionic linear optics. Quantum Inf. Comput. 5(3), 216–238 (2005)MathSciNetMATHGoogle Scholar
  23. 23.
    Wimmer M.: Efficient numerical computation of the Pfaffian for dense and banded skew-symmetric matrices. ACM Trans. Math. Softw. 38, 4 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rubow J., Wolff U.: A factorization algorithm to compute Pfaffians. Comput. Phys. Commun. 182(12), 2530–2532 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Schliemann J., Cirac J.I., Kuś M., Lewenstein M., Loss D.: Quantum correlations in two-fermion systems. Phys. Rev. A 64(2), 022303 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Kitaev A.Yu.: Unpaired Majorana fermions in quantum wires. Physics-Uspekhi 44(10S), 131 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Löwdin P.-O.: Quantum theory of many-particle systems I. Phys. Rev. 97(6), 1474 (1955)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kennedy A.: Approximation theory for matrices. Nucl. Phys. B Proc. Suppl. 128, 107–116 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Chiu T.-W., Hsieh T.-H., Huang C.-H., Huang T.-R.: Note on the Zolotarev optimal rational approximation for the overlap Dirac operator. Phys. Rev. D 66(11), 114502 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Gončar A.A.: Zolotarev problems connected with rational functions. Sbornik: Mathematics 7(4), 623–635 (1969)ADSCrossRefGoogle Scholar
  31. 31.
    Nakatsukasa, Y., Freund, R.W.: Computing fundamental matrix decompositions accurately via the matrix sign function in two iterations: The power of Zolotarev’s functions. http://eprints.ma.man.ac.uk/2414/01/papersirevrevrevf_tosiam.pdf, (2015)
  32. 32.
    Anderson G.D., Vamanamurthy M.K., Vuorinen M.: Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21(2), 536–549 (1990)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Newman D.J.: Rational approximation to \({|x|}\). Mich. Math. J. 11(1), 11–14 (1964)CrossRefMATHGoogle Scholar
  34. 34.
    Schultz T.D., Mattis D.C., Lieb E.H.: Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36(3), 856 (1964)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Pfeuty P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57(1), 79–90 (1970)ADSCrossRefGoogle Scholar
  36. 36.
    Mazziotti D.A.: Variational two-electron reduced density matrix theory for many-electron atoms and molecules: implementation of the spin-and symmetry-adapted T2 condition through first-order semidefinite programming. Phys. Rev. A 72(3), 032510 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Francesco P., Mathieu P., Sénéchal D.: Conformal Field Theory. Springer, Berlin (2012)MATHGoogle Scholar
  38. 38.
    Wecker D., Hastings M.B., Wiebe N., Clark B.K., Nayak C., Troyer M.: Solving strongly correlated electron models on a quantum computer. Phys. Rev. A 92(6), 062318 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)Google Scholar
  40. 40.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, Cambridge (2000)Google Scholar
  41. 41.
    Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pages 20–29, New York, NY, USA, ACM. (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations