Advertisement

Communications in Mathematical Physics

, Volume 357, Issue 1, pp 267–293 | Cite as

On the Stability of KMS States in Perturbative Algebraic Quantum Field Theories

  • Nicolò Drago
  • Federico Faldino
  • Nicola Pinamonti
Article
  • 51 Downloads

Abstract

We analyze the stability properties shown by KMS states for interacting massive scalar fields propagating over Minkowski spacetime, recently constructed in the framework of perturbative algebraic quantum field theories by Fredenhagen and Lindner (Commun Math Phys 332:895, 2014). In particular, we prove the validity of the return to equilibrium property when the interaction Lagrangian has compact spatial support. Surprisingly, this does not hold anymore, if the adiabatic limit is considered, namely when the interaction Lagrangian is invariant under spatial translations. Consequently, an equilibrium state under the adiabatic limit for a perturbative interacting theory evolved with the free dynamics does not converge anymore to the free equilibrium state. Actually, we show that its ergodic mean converges to a non-equilibrium steady state for the free theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al90.
    Altherr, T.: Infrared problem in \({g\varphi^4}\) theory at finite temperature. Phys. Lett. B 238(24), 360–366 (1990)Google Scholar
  2. Ar73.
    Araki H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. Res. Inst. Math. Sci. 9(1), 165–209 (1973)MathSciNetCrossRefMATHGoogle Scholar
  3. BB02.
    Bros J., Buchholz D.: Asymptotic dynamics of thermal quantum fields. Nucl. Phys. B 627, 289 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. BKR78.
    Bratteli O., Kishimoto A., Robinson D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61, 209–238 (1978)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. BR97.
    Bratteli O., Robinson D.W.: Operator algebras and quantum statistical mechanics 2. Springer, Berlin (1997)CrossRefMATHGoogle Scholar
  6. BDF09.
    Brunetti R., Duetsch M., Fredenhagen K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. BF00.
    Brunetti R., Fredenhagen K.: Micrological analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)ADSCrossRefMATHGoogle Scholar
  8. BF09.
    Brunetti, R., Fredenhagen, K.: Quantum Field Theory on Curved Backgrounds, in Lecture Notes in Physics 786, ed. Springer (2009), pp. 129–155, Chapter 5.Google Scholar
  9. BFK95.
    Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. BFV03.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003)ADSCrossRefMATHGoogle Scholar
  11. CF09.
    Chilian B., Fredenhagen K.: The time-slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513–522 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. DHP16.
    Drago N., Hack T.-P., Pinamonti N.: The generalised principle of perturbative agreement and the thermal mass. Ann. Henri. Poincaré 18(3), 807–868 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. DF04.
    Dütsch M., Fredenhagen K.: Causal perturbation theory in terms of retarded products, and a proof of the action ward identity. Rev. Math. Phys. 16, 1291 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. EG73.
    Epstein, H., Glaser V.: The role of locality in perturbation theory. Ann. Inst. Henri Poincaré Section A, vol. XIX, n.3, 211 (1973)Google Scholar
  15. FL14.
    Fredenhagen K., Lindner F.: Construction of KMS states in perturbative QFT and renormalized Hamiltonian dynamics. Commun. Math. Phys. 332, 895 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. FR12.
    Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory, arXiv:1208.1428 [math-ph] (2012)
  17. FR14.
    Fredenhagen K., Rejzner K.: QFT on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. GR07.
    Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, Seventh Edition. Academic Press, Cambridge (2007)MATHGoogle Scholar
  19. Ha92.
    Haag R.: Local Quantum Physics. Fields Particles Algebras. Text and Monographs in Physics. Springer, Berlin (1992)MATHGoogle Scholar
  20. HKT74.
    Haag R., Kastler D., Trych-Pohlmeyer E.B.: Stability and equilibrium states. Commun. Math. Phys. 38, 173–193 (1974)ADSMathSciNetCrossRefGoogle Scholar
  21. HHW67.
    Haag R., Hugenholtz N.M., Winnink M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. HW01.
    Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. HW02.
    Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. HW03.
    Hollands S., Wald R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123–160 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. JP01.
    Jakšić V., Pillet C.-A.: On entropy production in quantum statistical mechanic. Commun. Math. Phys. 217, 285 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. JP02.
    Jakšić V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. LW97.
    Landsman N.P., van Weert C.G.: Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)ADSMathSciNetCrossRefGoogle Scholar
  28. Le00.
    Le Bellac M.: Thermal Field Theory. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  29. Li13.
    Lindner, F.: Perturbative Algebraic Quantum Field Theory at Finite Temperature. Ph.D. thesis, University of Hamburg (2013).Google Scholar
  30. OHI88.
    Ojima I., Hasegawa H., Ichiyanagi M.: Entropy production and its positivity in nonlinear response theory of quantum dynamical systems. J. Stat. Phys. 50, 633 (1988)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. Oj89.
    Ojima I.: Entropy production and non-equilibrium stationarity in quantum dynamical systems: physical meaning of van Hove limit. J. Stat. Phys. 56, 203 (1989)ADSCrossRefGoogle Scholar
  32. Oj91.
    Ojima, I.: Entropy production and non-equilibrium stationarity in quantum dynamical systems. In: Proceedings of International Workshop on Quantum Aspects of Optical Communications. Lecture Notes in Physics 378, 164. Berlin: Springer (1991)Google Scholar
  33. Ra96.
    Radzikowski M.J.: Micro-local approach To The Hadamard condition in quantum field theory on curved Space-time. Commun. Math. Phys. 179, 529 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. Ro73.
    Robinson D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. Ru00.
    Ruelle D.: Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57–75 (2000)MathSciNetCrossRefMATHGoogle Scholar
  36. St71.
    Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory, Lect. Notes in Phys. 11. Berlin: Springer (1971)Google Scholar
  37. St95.
    Steinmann O.: Perturbative quantum field theory at positive temperature: an axiomatic approach. Commun. Math. Phys. 170, 405–416 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di GenovaGenoaItaly
  2. 2.Istituto Nazionale di Fisica Nucleare - Sezione di GenovaGenoaItaly

Personalised recommendations