Skip to main content
Log in

Conformal Covariance and the Split Property

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that for a conformal local net of observables on the circle, the split property is automatic. Both full conformal covariance (i.e., diffeomorphism covariance) and the circle-setting play essential roles in this fact, while by previously constructed examples it was already known that even on the circle, Möbius covariance does not imply the split property.

On the other hand, here we also provide an example of a local conformal net living on the 2-dimensional Minkowski space, which—although being diffeomorphism covariant—does not have the split property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. 1. C * - and W *-Algebras, Symmetry Groups, Decomposition of States. Texts and Monographs in Physics. Springer, New York (1987)

  2. Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156(1), 201–219 (1993). http://projecteuclid.org/euclid.cmp/1104253522

  3. Buchholz, D.: Product states for local algebras. Commun. Math. Phys. 36, 287–304 (1974). http://projecteuclid.org/euclid.cmp/1103859773

  4. Buchholz, D., D’Antoni, C.: Phase space properties of charged fields in theories of local observables. Rev. Math. Phys. 7(4), 527–557 (1995). arXiv:hep-th/9410185

  5. Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88(2), 233–250 (1990). doi:10.1016/0022-1236(90)90104-S

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchholz, D., D’Antoni, R., Longo, C.: Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270(1), 267–293 (2007). arXiv:math-ph/0603083

  7. Buchholz, D., Mack, G., Todorov, I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B Proc. Suppl. 5, 20–56 (1988). https://www.researchgate.net/publication/222585851

  8. Buchholz, D., Wichmann, E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106(2), 321–344 (1986). http://projecteuclid.org/euclid.cmp/1104115703

  9. Carpi, S., Conti, R., Hillier, R., Weiner, M.: Representations of conformal nets, universal C*-algebras and K-theory. Commun. Math. Phys. 320(1), 275–300 (2013). arXiv:1202.2543

  10. Carpi, S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244(2), 261–284 (2004). arXiv:math/0306425

  11. Carpi, S., Weiner, M.: On the uniqueness of diffeomorphism symmetry in conformal field theory. Commun. Math. Phys. 258(1), 203–221 (2005). arXiv:math/0407190

  12. Ciolli, F.: Massless scalar free field in 1 + 1 dimensions. I. Weyl algebras products and superselection sectors. Rev. Math. Phys. 21(6), 735–780 (2009). arXiv:math-ph/0511064

  13. D’Antoni, C., Fredenhagen, K., Köster, S.: Implementation of conformal covariance by diffeomorphism symmetry. Lett. Math. Phys. 67(3), 239–247 (2004). arXiv:math-ph/0312017

  14. D’Antoni C., Longo R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51(3), 361–371 (1983). doi:10.1016/0022-1236(83)90018-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Del Vecchio, S., Giorgetti, L.: Infinite Index Extensions of Local Nets and Defects. arXiv:1703.03605

  16. Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables and gauge transformations. I. Commun. Math. Phys. 13, 1–23 (1969). http://projecteuclid.org/euclid.cmp/1103841481

  17. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75(3), 493–536 (1984). https://eudml.org/doc/143108

  18. Doplicher, S., Roberts, J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131(1), 51–107 (1990). http://projecteuclid.org/euclid.cmp/1104200703

  19. Fewster, C.J., Hollands, S.: Quantum energy inequalities in two-dimensional conformal field theory. Rev. Math. Phys. 17(5), 577–612 (2005). arXiv:math-ph/0412028

  20. Fredenhagen, K., Jörß, M.: Conformal Haag–Kastler nets, pointlike localized fields and the existence of operator product expansions. Commun. Math. Phys. 176(3), 541–554 (1996). http://projecteuclid.org/euclid.cmp/1104286114

  21. Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155(3), 569–640 (1993). https://projecteuclid.org/euclid.cmp/1104253398

  22. Furlan P., Sotkov G.M., Todorov I.T.: Two-dimensional conformal quantum field theory. Riv. Nuovo Cim. (3) 12(6), 1–202 (1989). doi:10.1007/BF02742979.pdf

    Article  MathSciNet  Google Scholar 

  23. Goodman, R., Wallach, N.R.: Projective unitary positive-energy representations of Diff(S 1). J. Funct. Anal. 63(3), 299–321 (1985). http://www.sciencedirect.com/science/article/pii/0022123685900904

  24. Guido, D., Longo, R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996). http://projecteuclid.org/euclid.cmp/1104287623

  25. Guido, D., Longo, R., Wiesbrock, H.-W.: Extensions of conformal nets and superselection structures. Commun. Math. Phys. 192(1), 217–244 (1998). arXiv:hep-th/9703129

  26. Haag R.: Local Quantum Physics, Texts and Monographs in Physics, 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

  27. Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys. 1, 308–320 (1965). https://projecteuclid.org/euclid.cmp/1103758947

  28. Kac V.G., Raina A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  29. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. 2. Advanced Theory. Graduate Studies in Mathematics, 16. American Mathematical Society, Providence, RI (1997)

  30. Kawahigashi, Y., Longo, R.: Classification of two-dimensional local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244(1), 63–97 (2004). arXiv:math-ph/0304022

  31. Kawahigashi, Y., Longo, R., Müger, M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219(3), 631–669 (2001). arXiv:math/9903104

  32. Koester, S.: Absence of Stress Energy Tensor in CFT2 Models (2003). arXiv:math-ph/0303053

  33. Loke, T.: Operator Algebras and Conformal Field Theory of the Discrete Series Representation of Diff(S 1), Ph.D. Thesis. University of Cambridge (1994)

  34. Longo, R.: An analogue of the Kac–Wakimoto formula and black hole conditional entropy. Commun. Math. Phys. 186(2), 451–479 (1997). arXiv:gr-qc/9605073

  35. Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys. 7(4), 567–597 (1995). Workshop on Algebraic Quantum Field Theory and Jones Theory (Berlin, 1994). arXiv:hep-th/9411077

  36. Longo, R., Xu, F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251(2), 321–364 (2004). arXiv:math/0309366

  37. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: De Witt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Les Houches, Session XL, 1983, pp. 1007–1057. Elsevier, Amsterdam (1984)

  38. Nelson, E.: Analytic vectors. Ann. Math. 2(70), 572–615 (1959). http://www.jstor.org/stable/1970331

  39. Neretin, Y.A.: Holomorphic continuations of representations of the group of diffeomorphisms of the circle. Math. Sb., 180(5), 635–657, 720 (1989). Translation in Math. USSR-Sb. 67(1), 75–97 (1990). http://www.mat.univie.ac.at/~neretin/holomorphic.pdf

  40. Ol’shanskiĭ G.I.: Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series. Funktsional. Anal. i Prilozhen 15 (1981). English transl. in Funct. Anal. Appl. 15 (1981). doi:10.1007%2FBF01106156

  41. Strătilă Ş., Zsidó L.: Lectures on von Neumann Algebras. Editura Academiei and Abacus Press, Kent (1979)

  42. Takesaki M.: Theory of Operator Algebras I. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  43. Weiner, M.: Conformal covariance and positivity of energy in charged sectors. Commun. Math. Phys. 265(2), 493–506 (2006). arXiv:math-ph/0507066

  44. Weiner, M.: Conformal Covariance and Related Properties of Chiral QFT. Ph.D. Thesis, Universitá di Roma “Tor Vergata” (2005). arXiv:math/0703336

  45. Wiesbrock, H.-W.: Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras. Commun. Math. Phys. 158(3), 537–543 (1993). http://projecteuclid.org/euclid.cmp/1104254361

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoh Tanimoto.

Additional information

Communicated by D. Buchholz, K. Fredenhagen, Y. Kawahigashi

V. Morinelli: Supported by the ERC advanced Grant 669240 QUEST “Quantum Algebraic Structures and Models”.

Y. Tanimoto: Supported by the JSPS fellowship for research abroad.

M. Weiner: Supported in part by the ERC advanced Grant 669240 QUEST “Quantum Algebraic Structures and Models” and by OTKA Grant No. 104206.

2017 by the authors. This article may be reproduced in its entirety for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morinelli, V., Tanimoto, Y. & Weiner, M. Conformal Covariance and the Split Property. Commun. Math. Phys. 357, 379–406 (2018). https://doi.org/10.1007/s00220-017-2961-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2961-3

Navigation