Advertisement

Communications in Mathematical Physics

, Volume 357, Issue 1, pp 379–406 | Cite as

Conformal Covariance and the Split Property

Article

Abstract

We show that for a conformal local net of observables on the circle, the split property is automatic. Both full conformal covariance (i.e., diffeomorphism covariance) and the circle-setting play essential roles in this fact, while by previously constructed examples it was already known that even on the circle, Möbius covariance does not imply the split property.

On the other hand, here we also provide an example of a local conformal net living on the 2-dimensional Minkowski space, which—although being diffeomorphism covariant—does not have the split property.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. 1. C * - and W *-Algebras, Symmetry Groups, Decomposition of States. Texts and Monographs in Physics. Springer, New York (1987)Google Scholar
  2. 2.
    Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156(1), 201–219 (1993). http://projecteuclid.org/euclid.cmp/1104253522
  3. 3.
    Buchholz, D.: Product states for local algebras. Commun. Math. Phys. 36, 287–304 (1974). http://projecteuclid.org/euclid.cmp/1103859773
  4. 4.
    Buchholz, D., D’Antoni, C.: Phase space properties of charged fields in theories of local observables. Rev. Math. Phys. 7(4), 527–557 (1995). arXiv:hep-th/9410185
  5. 5.
    Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88(2), 233–250 (1990). doi: 10.1016/0022-1236(90)90104-S MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Buchholz, D., D’Antoni, R., Longo, C.: Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270(1), 267–293 (2007). arXiv:math-ph/0603083
  7. 7.
    Buchholz, D., Mack, G., Todorov, I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B Proc. Suppl. 5, 20–56 (1988). https://www.researchgate.net/publication/222585851
  8. 8.
    Buchholz, D., Wichmann, E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106(2), 321–344 (1986). http://projecteuclid.org/euclid.cmp/1104115703
  9. 9.
    Carpi, S., Conti, R., Hillier, R., Weiner, M.: Representations of conformal nets, universal C*-algebras and K-theory. Commun. Math. Phys. 320(1), 275–300 (2013). arXiv:1202.2543
  10. 10.
    Carpi, S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244(2), 261–284 (2004). arXiv:math/0306425
  11. 11.
    Carpi, S., Weiner, M.: On the uniqueness of diffeomorphism symmetry in conformal field theory. Commun. Math. Phys. 258(1), 203–221 (2005). arXiv:math/0407190
  12. 12.
    Ciolli, F.: Massless scalar free field in 1 + 1 dimensions. I. Weyl algebras products and superselection sectors. Rev. Math. Phys. 21(6), 735–780 (2009). arXiv:math-ph/0511064
  13. 13.
    D’Antoni, C., Fredenhagen, K., Köster, S.: Implementation of conformal covariance by diffeomorphism symmetry. Lett. Math. Phys. 67(3), 239–247 (2004). arXiv:math-ph/0312017
  14. 14.
    D’Antoni C., Longo R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51(3), 361–371 (1983). doi: 10.1016/0022-1236(83)90018-6 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Del Vecchio, S., Giorgetti, L.: Infinite Index Extensions of Local Nets and Defects. arXiv:1703.03605
  16. 16.
    Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables and gauge transformations. I. Commun. Math. Phys. 13, 1–23 (1969). http://projecteuclid.org/euclid.cmp/1103841481
  17. 17.
    Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75(3), 493–536 (1984). https://eudml.org/doc/143108
  18. 18.
    Doplicher, S., Roberts, J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131(1), 51–107 (1990). http://projecteuclid.org/euclid.cmp/1104200703
  19. 19.
    Fewster, C.J., Hollands, S.: Quantum energy inequalities in two-dimensional conformal field theory. Rev. Math. Phys. 17(5), 577–612 (2005). arXiv:math-ph/0412028
  20. 20.
    Fredenhagen, K., Jörß, M.: Conformal Haag–Kastler nets, pointlike localized fields and the existence of operator product expansions. Commun. Math. Phys. 176(3), 541–554 (1996). http://projecteuclid.org/euclid.cmp/1104286114
  21. 21.
    Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155(3), 569–640 (1993). https://projecteuclid.org/euclid.cmp/1104253398
  22. 22.
    Furlan P., Sotkov G.M., Todorov I.T.: Two-dimensional conformal quantum field theory. Riv. Nuovo Cim. (3) 12(6), 1–202 (1989). doi: 10.1007/BF02742979.pdf MathSciNetCrossRefGoogle Scholar
  23. 23.
    Goodman, R., Wallach, N.R.: Projective unitary positive-energy representations of Diff(S 1). J. Funct. Anal. 63(3), 299–321 (1985). http://www.sciencedirect.com/science/article/pii/0022123685900904
  24. 24.
    Guido, D., Longo, R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996). http://projecteuclid.org/euclid.cmp/1104287623
  25. 25.
    Guido, D., Longo, R., Wiesbrock, H.-W.: Extensions of conformal nets and superselection structures. Commun. Math. Phys. 192(1), 217–244 (1998). arXiv:hep-th/9703129
  26. 26.
    Haag R.: Local Quantum Physics, Texts and Monographs in Physics, 2nd edn. Springer, Berlin (1996)CrossRefGoogle Scholar
  27. 27.
    Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys. 1, 308–320 (1965). https://projecteuclid.org/euclid.cmp/1103758947
  28. 28.
    Kac V.G., Raina A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. World Scientific, Singapore (1987)MATHGoogle Scholar
  29. 29.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. 2. Advanced Theory. Graduate Studies in Mathematics, 16. American Mathematical Society, Providence, RI (1997)Google Scholar
  30. 30.
    Kawahigashi, Y., Longo, R.: Classification of two-dimensional local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244(1), 63–97 (2004). arXiv:math-ph/0304022
  31. 31.
    Kawahigashi, Y., Longo, R., Müger, M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219(3), 631–669 (2001). arXiv:math/9903104
  32. 32.
    Koester, S.: Absence of Stress Energy Tensor in CFT2 Models (2003). arXiv:math-ph/0303053
  33. 33.
    Loke, T.: Operator Algebras and Conformal Field Theory of the Discrete Series Representation of Diff(S 1), Ph.D. Thesis. University of Cambridge (1994)Google Scholar
  34. 34.
    Longo, R.: An analogue of the Kac–Wakimoto formula and black hole conditional entropy. Commun. Math. Phys. 186(2), 451–479 (1997). arXiv:gr-qc/9605073
  35. 35.
    Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys. 7(4), 567–597 (1995). Workshop on Algebraic Quantum Field Theory and Jones Theory (Berlin, 1994). arXiv:hep-th/9411077
  36. 36.
    Longo, R., Xu, F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251(2), 321–364 (2004). arXiv:math/0309366
  37. 37.
    Milnor, J.: Remarks on infinite-dimensional Lie groups. In: De Witt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Les Houches, Session XL, 1983, pp. 1007–1057. Elsevier, Amsterdam (1984)Google Scholar
  38. 38.
    Nelson, E.: Analytic vectors. Ann. Math. 2(70), 572–615 (1959). http://www.jstor.org/stable/1970331
  39. 39.
    Neretin, Y.A.: Holomorphic continuations of representations of the group of diffeomorphisms of the circle. Math. Sb., 180(5), 635–657, 720 (1989). Translation in Math. USSR-Sb. 67(1), 75–97 (1990). http://www.mat.univie.ac.at/~neretin/holomorphic.pdf
  40. 40.
    Ol’shanskiĭ G.I.: Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series. Funktsional. Anal. i Prilozhen 15 (1981). English transl. in Funct. Anal. Appl. 15 (1981). doi: 10.1007%2FBF01106156
  41. 41.
    Strătilă Ş., Zsidó L.: Lectures on von Neumann Algebras. Editura Academiei and Abacus Press, Kent (1979)Google Scholar
  42. 42.
    Takesaki M.: Theory of Operator Algebras I. Springer, Heidelberg (2002)MATHGoogle Scholar
  43. 43.
    Weiner, M.: Conformal covariance and positivity of energy in charged sectors. Commun. Math. Phys. 265(2), 493–506 (2006). arXiv:math-ph/0507066
  44. 44.
    Weiner, M.: Conformal Covariance and Related Properties of Chiral QFT. Ph.D. Thesis, Universitá di Roma “Tor Vergata” (2005). arXiv:math/0703336
  45. 45.
    Wiesbrock, H.-W.: Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras. Commun. Math. Phys. 158(3), 537–543 (1993). http://projecteuclid.org/euclid.cmp/1104254361

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Vincenzo Morinelli
    • 1
  • Yoh Tanimoto
    • 1
  • Mihály Weiner
    • 2
  1. 1.Dipartimento di MatematicaUniversitá di Roma Tor VergataRomeItaly
  2. 2.Department of Analysis, Mathematical InstituteBudapest University of Technology and Economics (BME)BudapestHungary

Personalised recommendations