Communications in Mathematical Physics

, Volume 355, Issue 2, pp 645–689 | Cite as

Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter

Article

Abstract

We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev’s quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakalov, B., Kirillov, A.A.: Lectures on tensor categories and modular functors vol. 21. American Mathematical Society, Providence (2001)Google Scholar
  2. 2.
    Bais F.A., Slingerland J.K.: Condensate induced transitions between topologically ordered phases. Phys. Rev. B 79, 045316 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Barkeshli M., Qi X.-L.: Topological nematic states and non-abelian lattice dislocations. Phys. Rev. X 2(3), 031013 (2012)Google Scholar
  4. 4.
    Barkeshli M., Bonderson P., Cheng M., Wang Z.: Symmetry, defects, and gauging of topological phases (2014). Arxiv preprint arXiv:1410.4540
  5. 5.
    Barkeshli M., Sau J.D.: Physical architecture for a universal topological quantum computer based on a network of Majorana nanowires (2015). Arxiv preprint arxiv:1509.07135
  6. 6.
    Barkeshli M., Jian C.-M., Qi X.-L.: Twist defects and projective non-abelian braiding statistics. Phys. Rev. B 87(4), 045130 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Barkeshli M., Jian C.-M., Qi X.-L.: Theory of defects in Abelian topological states. Phys. Rev. B 88(23), 235103 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Barkeshli M., Jian C.-M., Qi X.-L.: Classification of topological defects in abelian topological states. Phys. Rev. B 88(24), 241103 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Beigi S., Shor P.W., Whalen D.: The quantum double model with boundary: condensations and symmetries. Commun. Math. Phys. 306(3), 663–694 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bombin H., Martin-Delgado M.A.: Family of non-abelian Kitaev models on a lattice: topological condensation and confinement. Phys. Rev. B 78, 115421 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Bombin H., Martin-Delgado M.A.: Nested topological order. New J. Phys. 13, 125001 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Bravyi, S.B., Kitaev, A.Y.: Quantum codes on a lattice with boundary (1998). arXiv:quant-ph/9811052
  13. 13.
    Chang, L.: Kitaev models based on unitary quantum groupoids. J. Math. Phys. 55(4), 041703, 20 (2014)Google Scholar
  14. 14.
    Chang L. et al.: On enriching the Levin-Wen model with symmetry. J. Phys. A Math. Theor. 48(12), 12FT01 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cheng M.: Superconducting proximity effect on the edge of fractional topological insulators. Phys. Rev. B 86, 195126 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Clarke D.J., Alicea J., Shtengel K.: Exotic non-abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Cong, I., Cheng, M., Wang, Z.: Topological quantum computation with gapped boundaries (2016). Arxiv preprint arXiv:1609.02037
  18. 18.
    Cong, I., Cheng, M., Wang, Z.: On defects between gapped boundaries in two-dimensional topological phases of matter (2017). Arxiv preprint arXiv:1703.03564
  19. 19.
    Cong, I., Cheng, M.,Wang, Z.: Universal quantum computation with gapped boundaries (In preparation)Google Scholar
  20. 20.
    Cui S.X., Hong S.-M., Wang Z.: Universal quantum computation with weakly integral anyons. Quantum Inf. Process. 14, 26872727 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. Journal für die reine und angewandte Mathematik 677, 177 (2012). doi: 10.1515/crelle.2012.014 MATHGoogle Scholar
  22. 22.
    Davydov A.: Bogomolov multiplier, double class-preserving automorphisms and modular invariants for orbifolds. J. Math. Phys. 55, 092305 (2014) arXiv:1312.7466 ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dennis E., Kitaev A.Y., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43, 4452 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Drinfeld V.: Quasi-Hopf algebras. Leningrad Math. J. 1, 1419–1457 (1989)MathSciNetGoogle Scholar
  25. 25.
    Eliëns I.S., Romers J.C., Bais F.A.: Diagrammatics for Bose condensation in anyon theories. Phys. Rev. B 90, 195130 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. Math. 162(2), 581–642 (2005)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Fowler A.G., Mariantoni M., Martinis J.M., Cleland A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Freedman M.H.: P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. 95(1), 98–101 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Freedman M., Kitaev A., Larsen M., Wang Z.: Topological quantum computation. Bull. Am. Math. Soc. 40(1), 31–38 (2003)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Correspondences of ribbon categories. Adv. Math. 199(1), 192–329 (2006)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators I: partition functions. Nucl. Phys. B 646(3), 353–497 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators IV: structure constants and correlation functions. Nucl. Phys. B 715(3), 539–638 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Fuchs J., Schweigert C., Valentino A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321(2), 543–575 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Fuchs J., Schweigert C., Valentino A.: A geometric approach to boundaries and surface defects in Dijkgraaf-Witten theories. Commun. Math. Phys. 332, 981 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Ganeshan S., Gorshkov A.V., Gurarie V., Galitski V.M.: Exactly soluble model of boundary degeneracy. Phys. Rev. B 95, 045309 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Gelaki S., Naidu D.: Some properties of group-theoretical categories. J. Algebra 322, 2631 (2007) arXiv:0709.4326 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Hung L.Y., Wan Y.: Ground-state degeneracy of topological phases on open surfaces. Phys. Rev. Lett. 114(7), 076401 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Kapustin A., Saulina N.: Topological boundary conditions in abelian Chern-Simons theory. Nucl. Phys. B 845, 393 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Kapustin A.: Ground-state degeneracy for Abelian anyons in the presence of gapped boundaries. Phys. Rev. B 89, 125307 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Kapustin, A., Saulina, N.: Surface operators in 3d topological field theory and 2d rational conformal field theory. In: Mathematical Foundations of Quantum Field and Perturbative String Theory. AMS (2011). arXiv:1012.0911
  41. 41.
    Kirillov A., Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of sl 2 conformal field theories. Adv. Math. 171(2), 183–227 (2002)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(2), 2–30 (2003)Google Scholar
  43. 43.
    Kitaev, A.: Bose-condensation and edges of topological quantum phases. Talk at modular categories and applications. Indiana University, 19–22 March 2009Google Scholar
  44. 44.
    Kitaev A., Kong L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313, 351–373 (2012) . doi: 10.1007/s00220-012-1500-5 ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Kong, L.: Some universal properties of Levin-Wen models. XVIITH International Congress of Mathematical Physics, World Scientific (2014)Google Scholar
  46. 46.
    Kong L.: Anyon condensation and tensor categories. Nucl. Phys. B 886, 436 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Kong, L., Wen, X.-G., Hao, Z.: Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers (2015). arXiv:1502.01690
  48. 48.
    Lan T., Wang J.C., Wen X.-G.: Gapped domain walls, gapped boundaries, and topological degeneracy. Phys. Rev. Lett. 114(7), 076402 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    Levin M.A., Wen X.-G.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    Levin M.: Protected edge modes without symmetry. Phys. Rev. X 3, 021009 (2013)Google Scholar
  51. 51.
    Lindner N.H., Berg E., Refael G., Stern A.: Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012)Google Scholar
  52. 52.
    Mac Lane S.: Categories for the working mathematician, vol. 5. Springer Science and Business Media, Berlin (2013)MATHGoogle Scholar
  53. 53.
    Moore C., Rockmore D., Russell A.: Generic quantum Fourier transforms. J. ACM Trans. Algorithms 2(4), 707–723 (2006). doi: 10.1145/1198513.1198525 MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Müger M.: Galois extensions of braided tensor categories and braided crossed G-categories. J. Algebra 277, 256281 (2004)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Müger, M.: Modular categories. In: Heunen, C., Sadrzadeh, M., Grefenstette, E. (eds.) Quantum Physics and Linguistics, Chapter 6. Oxford University Press, Oxford (2013)Google Scholar
  56. 56.
    Naidu D., Rowell E.C.: A finiteness property for braided fusion categories. Algebras Represent. Theory 14, 837 (2011). doi: 10.1007/s10468-010-9219-5 MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Nayak C. et al.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80(3), 1083 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Neupert T., He H., von Keyserlingk C., Sierra G., Bernevig B.A.: Boson condensation in topologically ordered quantum liquids. Phys. Rev. B 93, 115103 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    Neupert T., He H., von Keyserlingk C., Sierra G., Bernevig B.A.: No-go theorem for boson condensation in topologically ordered quantum liquids. New J. Phys. 18, 123009 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    Ostrik, V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. 27, 1507–1520 (2003)Google Scholar
  61. 61.
    Ostrik V.: Module categories, weak Hopf algebras, and modular invariants. Transform. Groups 8(2), 177–206 (2003)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Petkova V.B., Zuber J.B.: The many faces of Ocneanu cells. Nucl. Phys. B 603(3), 449–496 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Raussendorf R., Browne D.E., Briegel H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    Schauenburg, P.: Hopf algebra extensions and monoidal categories. New Directions in Hopf Algebras, vol. 43. MSRI Publications (2002)Google Scholar
  65. 65.
    Schauenburg P.: Hopf modules and the double of a quasi-Hopf algebra. Trans. Am. Math. Soc. 304(8), 3349–3378 (2002)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Schauenburg P.: Computing higher Frobenius-Schur indicators in fusion categories constructed from inclusions of finite groups. Pac. J. Math. 280(1), 177–201 (2015)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Varona J.: Rational values of the arccosine function. Open Math. 4(2), 319–322 (2006)MathSciNetMATHGoogle Scholar
  68. 68.
    Wan Yidun, Wang Chenjie: Fermion condensation and gapped domain walls in topological orders. JHEP 1703, 172 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Wang, Z.: Topological Quantum Computation. No. 112. American Mathematical Soc., Providence (2010)Google Scholar
  70. 70.
    Wen X.-G.: Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B 40(10), 7387 (1989)ADSCrossRefGoogle Scholar
  71. 71.
    Wang J.C., Wen X.-G.: Boundary degeneracy of topological order. Phys. Rev. B. 91(12), 125124 (2015)ADSCrossRefGoogle Scholar
  72. 72.
    Zhu, Y.: Hecke Algebras and Representation Rings of Hopf Algebras. Studies in Advanced Mathematics, vol. 20. http://hdl.handle.net/1783.1/51261 (2001)

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of PhysicsYale UniversityNew HavenUSA
  3. 3.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA
  4. 4.Microsoft Station QUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations