Skip to main content
Log in

Stochastic Stability of Pollicott–Ruelle Resonances

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Kinetic Brownian motion on the cosphere bundle of a Riemannian manifold \({\mathbb{M}}\) is a stochastic process that models the geodesic equation perturbed by a random white force of size \({\varepsilon}\). When \({\mathbb{M}}\) is compact and negatively curved, we show that the L 2-spectrum of the infinitesimal generator of this process converges to the Pollicott–Ruelle resonances of \({\mathbb{M}}\) as \({\varepsilon}\) goes to 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angst, J., Bailleul, I., Tardif, C.: Kinetic Brownian motion on Riemannian manifolds. Electron. J. Probab. 20 (2015)

  2. Baladi V.: Anisotropic Sobolev spaces and dynamical transfer operators: \({C^\infty}\) foliations. Algebr. Topol. Dyn. Contemp. Math. 385, 123–135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baladi V., Tsujii M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baudoin, F., Tardif, C.: Hypocoercive estimates on foliations and velocity spherical Brownian motion. Preprint. arXiv:1604.06813 (2016)

  5. Bernardin C., Huveneers F., Lebowitz J., Liverani C., Olla S.: Green–Kubo formula for weakly coupled systems with noise. Commun. Math. Phys. 334(3), 1377–1412 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bismut J.-M.: The hypoelliptic Laplacian on the cotangent bundle. J. Am. Math. Soc. 18(2), 379–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bismut J.-M.: Hypoelliptic Laplacian and probability. J. Math. Soc. Jpn. 67(4), 1317–1357 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bismut, J.-M.: Hypoelliptic Laplacian and Orbital Integrals. Annals of Mathematics Studies, vol. 177. Princeton University Press, Princeton (2011)

  9. Bismut, J.-M., Lebeau, G.: The Hypoelliptic Laplacian and Ray–Singer Metrics. Annals of Mathematics Studies, vol. 167. Princeton University Press, Princeton (2008)

  10. Datchev K., Dyatlov S., Zworski M.: Sharp polynomial bounds on the number of Pollicott–Ruelle resonances. Ergod. Theory Dyn. Syst. 34, 1168–1183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolgopyat D., Liverani C.: Energy transfer in a fast-slow Hamiltonian system. Commun. Math. Phys. 308(1), 201–225 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Drouot, A.: Scattering resonances for highly oscillatory potentials. To appear in Annales Scientifiques de l’ENS. Preprint. arXiv:1509.04198 (2015)

  13. Drouot, A.: Pollicott–Ruelle resonances via kinetic Brownian motion. Preprint. arXiv:1607.03841v2 (2016)

  14. Dencker N., Sjöstrand J., Zworski M.: Pseudospectra of semiclassical (pseudo)differential operators. Commun. Pure Appl. Math. 57, 384–415 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyatlov S., Zworski M.: Stochastic stability of Pollicott–Ruelle resonances. Nonlinearity 28(10), 3511–3533 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dyatlov S., Zworski M.: Dynamical zeta functions via microlocal analysis. Annales de l’ENS 49, 532–577 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances. http://math.mit.edu/~dyatlov/res/res_20170323.pdf. Accessed 5 May 2017

  18. Dyatlov, S., Zworski, M.: Ruelle zeta function at zero for surfaces. To appear in Inventiones. Preprint. arXiv:1606.04560 (2016)

  19. Elworthy, D.K.: Stochastic differential equations on manifolds. In: London Mathematical Society Lecture Note Series, vol. 70 (1982)

  20. Faure F., Sjöstrand J.: Upper bound on the density of Ruelle resonances for Anosov flows. Commun. Math. Phys. 308, 325–364 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Franchi J., Le Jan Y.: Relativistic diffusions and Schwarzschild geometry. Commun. Pure Appl. Math. 60, 187–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fried D.: Meromorphic zeta functions for analytic flows. Commun. Math. Phys. 174, 161–190 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Galtsev S.V., Shafarevich A.I.: Quantized Riemann surfaces and semiclassical spectral series for a nonselfadjoint Schrödinger operator with periodic coefficients. Theoret. Math. Phys. 148, 206–226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grigis, A., Sjöstrand, J.: Microlocal analysis for differential operators: an introduction. In: London Mathematical Society Lecture Note Series, vol. 196 (1994)

  25. Grothaus, M., Stilgenbauer, P.: Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stoch. Dyn. 13(4) (2013)

  26. Gouëzel S., Liverani C.: Banach spaces adapted to Anosov systems. Ergod. Theory Dynam. Syst. 26, 189–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hörmander L.: Second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hsu Elton, P.: Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, vol. 38. American Mathematical Society, Providence (2002)

  29. Jørgensen E.: Construction of the Brownian motion and the Ornstein-Uhlenbeck process in a Riemannian manifold on basis of the Gangolli–McKean injection scheme. Z. Wahrsch. Verw. Gebiete 44, 71–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kolokoltsov, V.N.: Semiclassical analysis for diffusions and stochastic processes. In: Lecture Notes in Mathematics 1724, Springer, Berlin (2000)

  31. Langevin P.: Sur la thorie du mouvement Brownien. C. R. Acad. Sci. Paris 146, 530–532 (1908)

    MATH  Google Scholar 

  32. Lebeau G.: ’equations de Fokker–Planck géométriques. II. Estimations hypoelliptiques maximales. Ann. Inst. Fourier (Grenoble) 57(4), 1285–1314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lerner N.: Energy methods via coherent states and advanced pseudo-differential calculus. Multidimensional complex analysis and partial differential equations. Cotemp. Math. 205, 177–201 (1997)

    Article  MATH  Google Scholar 

  34. Li X.-M.: Random perturbation to the geodesic equation. Ann. Probab. 44(1), 544–566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liverani C.: Fredholm determinants, Anosov maps and Ruelle resonances. Discrete Contin. Dyn. Syst. 13, 1203–1215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Melrose, R.B.: Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In: Ikawa, M. (ed.) Spectral and Scattering Theory. Marcel Dekker, New York (1994)

  37. Nonnenmacher S., Zworski M.: Decay of correlations for normally hyperbolic trapping. Invent. Math. 200(2), 345–438 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Rothschild L., Stein E.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen S.: Analytic torsion, dynamical zeta functions and orbital integrals. CR Math. 354(4), 433–436 (2016)

    MathSciNet  Google Scholar 

  40. Smith, H.: Parametrix for a semiclassical sum of squares (in preparation)

  41. Soloveitchik M.R.: Fokker–Planck equation on a manifold. Effective diffusion and spectrum. Potential Anal. 4, 571–593 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tsujii M.: Quasi-compactness of transfer operators for contact Anosov ows. Nonlinearity 23, 1495–1545 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Vasy A.: Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces, with an appendix by Semyon Dyatlov. Invent. Math. 194, 381–513 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)

  45. Zworski M.: Mathematical study of scattering resonances. Bull. Math. Sci. 7, 1–85 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Drouot.

Additional information

Communicated by J. Marklof

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drouot, A. Stochastic Stability of Pollicott–Ruelle Resonances. Commun. Math. Phys. 356, 357–396 (2017). https://doi.org/10.1007/s00220-017-2956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2956-0

Navigation