Communications in Mathematical Physics

, Volume 357, Issue 1, pp 353–378 | Cite as

An Analogue of the Coleman–Mandula Theorem for Quantum Field Theory in Curved Spacetimes

Open Access
Article

Abstract

The Coleman–Mandula (CM) theorem states that the Poincaré and internal symmetries of a Minkowski spacetime quantum field theory cannot combine nontrivially in an extended symmetry group. We establish an analogous result for quantum field theory in curved spacetimes, assuming local covariance, the timeslice property, a local dynamical form of Lorentz invariance, and additivity. Unlike the CM theorem, our result is valid in dimensions \({n\geq 2}\) and for free or interacting theories. It is formulated for theories defined on a category of all globally hyperbolic spacetimes equipped with a global coframe, on which the restricted Lorentz group acts, and makes use of a general analysis of symmetries induced by the action of a group G on the category of spacetimes. Such symmetries are shown to be canonically associated with a cohomology class in the second degree nonabelian cohomology of G with coefficients in the global gauge group of the theory. Our main result proves that the cohomology class is trivial if G is the universal cover \({\mathcal{S}}\) of the restricted Lorentz group. Among other consequences, it follows that the extended symmetry group is a direct product of the global gauge group and \({\mathcal{S}}\), all fields transform in multiplets of \({\mathcal{S}}\), fields of different spin do not mix under the extended group, and the occurrence of noninteger spin is controlled by the centre of the global gauge group. The general analysis is also applied to rigid scale covariance.

References

  1. 1.
    de Azcárraga J.A., Izquierdo J.M.: Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  2. 2.
    Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brunetti R., Dütsch M., Fredenhagen K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Brunetti R., Ruzzi G.: Superselection sectors and general covariance. I. Commun. Math. Phys. 270, 69–108 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chilian B., Fredenhagen K.: The time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Comm. Math. Phys. 287, 513–522 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Coleman S., Mandula J.: All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967)ADSCrossRefMATHGoogle Scholar
  8. 8.
    Costa R., Morrison I.A.: On higher spin symmetries in de Sitter QFTs. J. High Energy Phys. 2016, 1–20 (2016)MathSciNetGoogle Scholar
  9. 9.
    Dabrowski Y., Brouder C.: Functional properties of H örmander’s space of distributions having a specified wavefront set. Comm. Math. Phys. 332, 1345–1380 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    DeWitt B.S., Brehme R.W.: Radiation damping in a gravitational field. Ann. Phys. 9, 220–259 (1960)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eilenberg S., MacLane S.: Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel. Ann. Math. 48, 326–341 (1947)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ferguson, M.T.: Aspects of dynamical locality and locally covariant canonical quantization. Ph.D. thesis, University of York. (2013) http://etheses.whiterose.ac.uk/4529/
  13. 13.
    Fewster, C.J.: The spin–statistics connection in curved spacetimes. In preparationGoogle Scholar
  14. 14.
    Fewster C.J.: Quantum energy inequalities and local covariance. II. Categorical formulation. Gen. Relat. Gravit. 39, 1855–1890 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008, 47 (2013)Google Scholar
  16. 16.
    Fewster C.J.: The split property for locally covariant quantum field theories in curved spacetime. Lett. Math. Phys. 105, 1633–1661 (2013) arXiv:1501.02682 ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fewster, C.J.: Locally covariant quantum field theory and the spin-statistics connection. Internat. J. Modern Phys. D. 25, 1630015, 18 (2016)Google Scholar
  18. 18.
    Fewster, C.J.: On the spin-statistics connection in curved spacetimes. In: Finster, F., Kleiner, J., Tolksdorf, J., Roeken, C. (eds.) Quantum Mathematical Physics: A Bridge Between Mathematics and Physics, Birkhäuser, Basel arXiv:1503.05797 (2016)
  19. 19.
    Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? Annales H. Poincaré 13, 1613–1674 (2012)Google Scholar
  20. 20.
    Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes. In: Brunetti R., Dappiaggi C., Fredenhagen K., Yngvason J. (eds.) Advances in Algebraic Quantum Field Theory, Mathematical Physics Studies, pp. 125–189. Springer International Publishing, Springer International Publishing (2015)Google Scholar
  21. 21.
    Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer-Verlag, Berlin (1992)CrossRefMATHGoogle Scholar
  22. 22.
    Haag R., Łopuszański J.T., Sohnius M.: All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B 88, 257–274 (1975)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hack T.P., Hanisch F., Schenkel A.: Supergeometry in locally covariant quantum field theory. Comm. Math. Phys. 342, 615–673 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Isham C.J.: Spinor fields in four-dimensional space-time. Proc. R. Soc. Lond. Ser. A 364, 591–599 (1978)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Jost R.: Eine Bemerkung zu einem “Letter” von L. O’Raifeartaigh und einer Entgegnung von M. Flato und D. Sternheimer. Helv. Phys. Acta. 39, 369–375 (1966)MathSciNetMATHGoogle Scholar
  28. 28.
    Lechner G., Sanders K.: Modular nuclearity: a generally covariant perspective. Axioms 5, 5 (2016)CrossRefGoogle Scholar
  29. 29.
    Łopuszański J.T.: On some properties of physical symmetries. J. Math. Phys. 12, 2401–2412 (1971)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Michel L.: Sur les extensions centrales du groupe de Lorentz inhomogène connexe. Nucl. Phys. 57, 356–385 (1964)CrossRefMATHGoogle Scholar
  31. 31.
    Neeb K.H.: Non-abelian extensions of infinite-dimensional Lie groups. Ann. Inst. Fourier (Grenoble) 57, 209–271 (2007)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    O’Raifeartaigh L.: Internal symmetry and Lorentz invariance. Phys. Rev. Lett. 14, 332–334 (1965)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Parke S.: Absence of particle production and factorization of the S-matrix in 1 + 1 dimensional models. Nucl. Phys. B 174, 166–182 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    Pelc O., Horwitz L.P.: Generalization of the Coleman-Mandula theorem to higher dimension. J. Math. Phys. 38, 139–172 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Pinamonti N.: Conformal generally covariant quantum field theory: the scalar field and its Wick products. Comm. Math. Phys. 288, 1117–1135 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Rejzner K.: Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians. Mathematical Physics Studies. Springer, Cham (2016)CrossRefMATHGoogle Scholar
  37. 37.
    Ruzzi G.: Punctured Haag duality in locally covariant quantum field theories. Comm. Math. Phys. 256, 621–634 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Sanders K.: On the Reeh–Schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Sanders K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381–430 (2010)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Shtern A.I.: A version of van der Waerden’s theorem and a proof of Mishchenko’s conjecture for homomorphisms of locally compact groups. Izv. Ross. Akad. Nauk Ser. Mat. 72, 183–224 (2008)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Verch R.: A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework. Commun. Math. Phys. 223, 261–288 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkHeslington, YorkUK

Personalised recommendations