Skip to main content
Log in

The Measurement Process in Local Quantum Physics and the EPR Paradox

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe in a qualitative way a possible picture of the Measurement Process in Quantum Mechanics, which takes into account the finite and non zero time duration T of the interaction between the observed system and the microscopic part of the measurement apparatus; the finite space size R of that apparatus; and the fact that the macroscopic part of the measurement apparatus, having the role of amplifying the effect of that interaction to a macroscopic scale, is composed by a very large but finite number N of particles. The Schrödinger evolution of the composed system can be expected to deform into the conventional picture of the measurement, as an instantaneous action turning a pure state into a mixture, only in the limit \({N \rightarrow \infty, T \rightarrow 0, R \rightarrow \infty}\). Our main point is to discuss this picture for the measurement of local observables in Quantum Field Theory, where the dynamics of the theory and the measurement itself are described by the same time evolution complying with the Principle of Locality. We comment on the Einstein Podolski Rosen thought experiment, reformulated here only in terms of local observables (rather than global ones, as one particle or polarization observables).The local picture of the measurement process helps to make it clear that there is no conflict with the Principle of Locality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  2. Araki H., Yanase M. M.: Measurement of quantum mechanical operators. Phys. Rev. 120, 622–626 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aspect A.: Bell’s theorem: the naive view of an experimentalist. In: Bertlmann, R.A., Zeilinger, A. (eds) Quantum (Un)speakables—From Bell to Quantum Information, Springer, (2002)

  4. Auletta G., Fortunato M., Parisi G.: Quantum Mechanics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  5. Borchers H.J.: Energy and momentum as observables in algebraic quantum field theory. Commun. Math. Phys. 2, 49 (1966)

    Article  ADS  MATH  Google Scholar 

  6. Buchholz D., Doplicher S., Longo R.: On Noether’s theorem in quantum field theory. Ann. Phys. 170, 1 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Buchholz D., D’Antoni C., Fredenhagen K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123–135 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Daneri A., Loinger G.M., Prosperi A.: Quantum theory of measurement. Nucl. Phys. 33, 297–319 (1962)

    Article  MATH  Google Scholar 

  9. Doplicher, S.: Quantum field theory on quantum spacetime. J. Phys. Conf. Ser. 53, 793–798 (2006). arXiv:hep-th/0608124

  10. Doplicher, S.: Spin and Statistics and First Principles, Talk delivered at the Meeting Spin and Statistics 2008, Trieste. arXiv:0907.5313

  11. Doplicher, S.: The principle of locality: effectiveness, fate, and challenges. J. Math. Phys. 51, 015218, 50th anniversary special issue (2010)

  12. Doplicher S., Longo R.: Local aspects of superselection rules II. Commun. Math. Phys. 88, 399–409 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Doplicher S., Roberts J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131, 51–107 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Doplicher S., Haag R., Roberts J. E.: Local Observables and Particle statistics I. Commun. Math. Phys. 23, 199–230 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  16. Doplicher S., Haag R., Roberts J. E.: Local Observables and Particle statistics II. Commun. Math. Phys. 35, 49–85 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  17. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  18. Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1994)

    MATH  Google Scholar 

  19. Hellwig K. E., Kraus K.: Formal description of measurement in local quantum field theory. Phys. Rev. D 1, 566–571 (1970)

    Article  ADS  Google Scholar 

  20. Sewell G.: On the mathematical structure of quantum measurement theory. Rep. Math. Phys. 56, 271 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Summers, S. J.: Subsystems and independence in relativistic microscopic physics. Stud. Hist. Philos. Sci. B 40(2), 133–141 (2009). arXiv:0812.1517v2

  22. Takesaki M.: Theory of Operator Algebras. III, Encyclopedia of Mathematical Sciences. Springer, Berlin (2003)

    MATH  Google Scholar 

  23. von Neumann J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Doplicher.

Additional information

Communicated by D. Buchholz, K. Fredenhagen, Y. Kawahigashi

In memoriam Rudolf Haag, poet of first principles and of clarity, path opener and friend

Research partly supported by INdAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doplicher, S. The Measurement Process in Local Quantum Physics and the EPR Paradox. Commun. Math. Phys. 357, 407–420 (2018). https://doi.org/10.1007/s00220-017-2949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2949-z

Navigation