Advertisement

Communications in Mathematical Physics

, Volume 357, Issue 1, pp 203–229 | Cite as

The Flow of Weights and the Cuntz–Pimsner Algebras

  • Masaki Izumi
Article
  • 82 Downloads

Abstract

We describe the flows of weights for von Neumann algebras arising from KMS states for the gauge actions of the Cuntz–Pimsner algebras in terms of Poisson (tail) boundaries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afsar Z., an Huef A., Raeburn I.: KMS states on C *-algebras associated to local homeomorphisms. Internat J. Math. 25(8), 1450066, 28 (2014)Google Scholar
  2. 2.
    Connes A., Takesaki M.: The flow of weights on factors of type III. Tohoku Math. J. (2) 29(4), 473–575 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Connes A., Woods E.J.: Approximately transitive flows and ITPFI factors. Ergod. Theory Dyn. Syst. 5(2), 203–236 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Connes A., Woods E.J.: Hyperfinite von Neumann algebras and Poisson boundaries of time dependent random walks. Pac. J. Math. 137(2), 225–243 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Enomoto M., Fujii M., Watatani Y.: KMS states for gauge action on O A. Math. Jpn. 29(2), 607–619 (1984)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gjerde R., Johansen Ø.: Bratteli–Vershik models for Cantor minimal systems: applications to Toeplitz flows. Ergod. Theory Dyn. Syst. 20(6), 1687–1710 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Goodman T.N.T.: Maximal measures for expansive homeomorphisms. J. Lond. Math. Soc. (2) 5(6), 439–444 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Exel R., Laca M.: Partial dynamical systems and the KMS condition. Commun. Math. Phys. 232(2), 223–277 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Haag R., Hugenholtz N.M., Winnink M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5(2), 215–236 (1967)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hamachi, T., Oka, Y., Osikawa, M.: Flows associated with ergodic non-singular transformation groups. Publ. Res. Inst. Math. Sci. 11(1), 31–50 (1975/1976)Google Scholar
  11. 11.
    Hamachi, T.: On a Bernoulli shift with nonidentical factor measures. Ergod. Theory Dyn. Syst. 1(3), 273–283 (1982/1981)Google Scholar
  12. 12.
    Hamachi, T., Osikawa, M.: Computation of the associated flows of ITPFI2 factors of type III0. In: Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., vol. 123, pp. 196–210. Longman Sci. Tech., Harlow (1986)Google Scholar
  13. 13.
    Izumi M.: Subalgebras of infinite C*-algebras with finite Watatani indices. I. Cuntz algebras. Commun. Math. Phys. 155(1), 157–182 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Izumi M.: Non-commutative Poisson boundaries and compact quantum group actions. Adv. Math. 169(1), 1–57 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Izumi M.: E 0-semigroups: around and beyond Arveson’s work. J. Oper. Theory 68(2), 335–363 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Izumi M., Kajiwara T., Watatani Y.: KMS states and branched points. Ergod. Theory Dyn. Syst. 27(6), 1887–1918 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kaimanovich, V. A.: Measure-theoretic boundaries of Markov chains, 0–2 laws and entropy. In: Harmonic Analysis and Discrete Potential Theory (Frascati, 1991), pp. 145–180. Plenum, New York (1992)Google Scholar
  18. 18.
    Kajiwara T., Pinzari C., Watatani Y.: Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules. J. Funct. Anal. 159(2), 295–322 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kajiwara T., Watatani Y.: KMS states on finite-graph C*-algebras. Kyushu J. Math. 67(1), 83–104 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kakariadis E.T.A.: KMS states on Pimsner algebras associated with C*-dynamical systems. J. Funct. Anal. 269(2), 325–354 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Katsura, T.: A construction of C*-algebras from C*-correspondences. In: Advances in Quantum Dynamics (South Hadley, MA, 2002), Contemp. Math., vol. 335, pp. 173–182. American Mathematical Society. Providence (2003)Google Scholar
  22. 22.
    Krieger W.: On ergodic flows and the isomorphism of factors. Math. Ann. 223(1), 19–70 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Laca M., Neshveyev S.: KMS state of quasi-free dynamics on Pimsner algebras. J. Funct. Anal. 211(1), 457–482 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Laca M., Raeburn I., Ramagge J., Whittaker M.F.: Equilibrium states on the Cuntz–Pimsner algebras of self-similar actions. J. Funct. Anal. 266(11), 6619–6661 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pimsner, M.V.: A class of C*-algebras generalizing both Cuntz–Krieger algebras and crossed products by \({{{\mathbb{Z} }}}\). Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, pp. 189–212. American Mathematical Society, Providence (1997)Google Scholar
  26. 26.
    Pinzari C., Watatani Y., Yonetani K.: KMS states, entropy and the variational principle in full C*-dynamical systems. Commin. Math. Phys. 213(2), 331–379 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Queffélec, M.: Substitution dynamical systems–spectral analysis. Second edition. Lecture Notes in Mathematics, p. 1294. Springer, Berlin (2010)Google Scholar
  28. 28.
    Okayasu R.: Type III factors arising from Cuntz–Krieger algebras. Proc. Am. Math. Soc. 131(2), 2145–2153 (2002)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Olsen D., Pedersen G.K.: Some C*-dynamical systems with a single KMS state. Math. Scand. 42(2), 111–118 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Renault, J.: A groupoid approach to C*-algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)Google Scholar
  31. 31.
    Takesaki, M.: Tomita’s theory of modular Hilbert algebras and its applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin (1970)Google Scholar
  32. 32.
    Takesaki M.: Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math. 131(2), 249–310 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Weiss, B.: Single orbit dynamics. In: CBMS Regional Conference Series in Mathematics, vol. 95. American Mathematical Society, Providence (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Graduate School of ScienceKyoto UniversitySakyo-kuJapan

Personalised recommendations