Communications in Mathematical Physics

, Volume 357, Issue 1, pp 3–41 | Cite as

Braided Categories of Endomorphisms as Invariants for Local Quantum Field Theories



We want to establish the “braided action” (defined in the paper) of the DHR category on a universal environment algebra as a complete invariant for completely rational chiral conformal quantum field theories. The environment algebra can either be a single local algebra, or the quasilocal algebra, both of which are model-independent up to isomorphism. The DHR category as an abstract structure is captured by finitely many data (superselection sectors, fusion, and braiding), whereas its braided action encodes the full dynamical information that distinguishes models with isomorphic DHR categories. We show some geometric properties of the “duality pairing” between local algebras and the DHR category that are valid in general (completely rational) chiral CFTs. Under some additional assumptions whose status remains to be settled, the braided action of its DHR category completely classifies a (prime) CFT. The approach does not refer to the vacuum representation, or the knowledge of the vacuum state.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arv74.
    Arveson W.: On groups of automorphisms of operator algebras. J. Funct. Anal. 15, 217–243 (1974)MathSciNetCrossRefMATHGoogle Scholar
  2. BEK99.
    Böckenhauer J., Evans D.E., Kawahigashi Y.: On \({\alpha}\)-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208, 429–487 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. BGL93.
    Brunetti R., Guido D., Longo R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156, 201–219 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. BGL93.
    Bischoff M.: Models in boundary quantum field theory associated with lattices and loop group models. Commun. Math. Phys. 315, 827–858 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. Bis15.
    Bischoff M.: A remark on CFT realization of quantum doubles of subfactors. Case index \({<}\) 4. Lett. Math. Phys. 106(3), 341–363 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. BKLR15.
    Bischoff M., Kawahigashi Y., Longo R., Rehren K.-H.: Tensor Categories and Endomorphisms of von Neumann Algebras. With Applications to Quantum Field Theory. Springer Briefs in Mathematical Physics, vol. 3. Springer, Cham (2015)MATHGoogle Scholar
  7. Bor65.
    Borchers H.-J.: Local rings and the connection of spin with statistics. Commun. Math. Phys. 1, 281–307 (1965)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. Bor92.
    Borchers H.-J.: The CPT-theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315–332 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. BS93.
    Buchholz D., Summers S.J.: An algebraic characterization of vacuum states in Minkowski space. Commun. Math. Phys. 155, 449–458 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. BV14.
    Buchholz D., Verch R.: Macroscopic aspects of the Unruh effect. Class. Quantum Gravity 32, 245004 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. BW75.
    Bisognano J.J., Wichmann E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985–1007 (1975)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. Car04.
    Carpi S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244, 261–284 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. CKLW15.
    Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From Vertex Operator Algebras to Conformal Nets and Back. arXiv:1503.01260 (2015) (to appear in Memoirs of the American Mathematical Society)
  14. DGNO10.
    Drinfeld V., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories. I. Sel. Math. (N.S.) 16, 1–119 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. DHR69.
    Doplicher S., Haag R., Roberts J.E.: Fields, observables and gauge transformations. I. Commun. Math. Phys. 13, 1–23 (1969)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. DHR71.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)ADSMathSciNetCrossRefGoogle Scholar
  17. DL83.
    Doplicher S., Longo R.: Local aspects of superselection rules. II. Commun. Math. Phys. 88, 399–409 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. dlH79.
    de la Harpe, P. (ed.): Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann. In: Algèbres d’Opérateurs, Lecture Notes in Math., vol. 725, pp. 220–227. Springer, Berlin (1979)Google Scholar
  19. DLR01.
    D’Antoni C., Longo R., Radulescu F.: Conformal nets, maximal temperature and models from free probability. J. Oper. Theory 45, 195–208 (2001)MathSciNetMATHGoogle Scholar
  20. DMNO13.
    Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013)MathSciNetMATHGoogle Scholar
  21. Dop82.
    Doplicher S.: Local aspects of superselection rules. Commun. Math. Phys. 85, 73–86 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. DR89.
    Doplicher S., Roberts J.E.: A new duality theory for compact groups. Invent. Math. 98, 157–218 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. DR90.
    Doplicher S., Roberts J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131, 51–107 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. Dri79.
    Driessler W.: Duality and absence of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys. 70, 213–220 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. DX06.
    Dong C., Xu F.: Conformal nets associated with lattices and their orbifolds. Adv. Math. 206, 279–306 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. EGNO15.
    Etingof P., Gelaki S., Nikshych D., Ostrik V.: Tensor Categories, Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)MATHGoogle Scholar
  27. FJ96.
    Fredenhagen K., Jörß M.: Conformal Haag–Kastler nets, pointlike localized fields and the existence of operator product expansions. Commun. Math. Phys. 176, 541–554 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. FRS92.
    Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras. II. Geometric aspects and conformal covariance. Rev. Math. Phys. SI1 (Special Issue), 113–157 (1992)MathSciNetCrossRefMATHGoogle Scholar
  29. GF93.
    Gabbiani F., Fröhlich J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155, 569–640 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. Gio16.
    Giorgetti, L.: Braided Actions of DHR Categories and Reconstruction of Chiral Conformal Field Theories. Ph.D. thesis, Georg-August-Universität Göttingen, Institut für Theoretische Physik (2016).
  31. GL92.
    Guido D., Longo R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys. 148, 521–551 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. GL96.
    Guido D., Longo R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181, 11–35 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. GLW98.
    Guido D., Longo R., Wiesbrock H.-W.: Extensions of conformal nets and superselection structures. Commun. Math. Phys. 192, 217–244 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. Haa87.
    Haagerup U.: Connes’ bicentralizer problem and uniqueness of the injective factor of type III1. Acta Math. 158, 95–148 (1987)MathSciNetCrossRefMATHGoogle Scholar
  35. Haa96.
    Haag R.: Local Quantum Physics. Springer, Berlin (1996)CrossRefMATHGoogle Scholar
  36. HH15.
    Holland J., Hollands S.: Recursive construction of operator product expansion coefficients. Commun. Math. Phys. 336, 1555–1606 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. HP15.
    Henriques A., Penneys D.: Bicommutant categories from fusion categories. Sel. Math. New Ser. 23(3), 1669–1708 (2017)MathSciNetCrossRefMATHGoogle Scholar
  38. HY00.
    Hayashi T., Yamagami S.: Amenable tensor categories and their realizations as AFD bimodules. J. Funct. Anal. 172, 19–75 (2000)MathSciNetCrossRefMATHGoogle Scholar
  39. Izu15.
    Izumi, M.: A Cuntz algebra approach to the classification of near-group categories. In: Proceedings of the 2014 Main and 2015 Qinhuangdao Conferences in Honour of Vaughan F.R. Jones’ 60th Birthday, 222–343, Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University, Canbersa AUS (2017)Google Scholar
  40. Jos65.
    Jost R.: The General Theory of Quantized Fields. Amer. Math. Soc, Providence, R.I. (1965)MATHGoogle Scholar
  41. Kad52.
    Kadison R.V.: Infinite unitary groups. Trans. Am. Math. Soc. 72, 386–399 (1952)MathSciNetCrossRefMATHGoogle Scholar
  42. Kaw15.
    Kawahigashi Y.: Conformal field theory, tensor categories and operator algebras. J. Phys. A 48, 303001 (2015)MathSciNetCrossRefMATHGoogle Scholar
  43. KL04.
    Kawahigashi Y., Longo R.: Classification of local conformal nets. Case \({c < 1}\). Ann. Math. 160, 493–522 (2004)MathSciNetCrossRefMATHGoogle Scholar
  44. KL06.
    Kawahigashi Y., Longo R.: Local conformal nets arising from framed vertex operator algebras. Adv. Math. 206, 729–751 (2006)MathSciNetCrossRefMATHGoogle Scholar
  45. KLM01.
    Kawahigashi Y., Longo R., Müger M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  46. KW01.
    Kähler R., Wiesbrock H.-W.: Modular theory and the reconstruction of four-dimensional quantum field theories. J. Math. Phys. 42, 74–86 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  47. Lon89.
    Longo R.: Index of subfactors and statistics of quantum fields. I. Commun. Math. Phys. 126, 217–247 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  48. Lon90.
    Longo R.: Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial. Commun. Math. Phys. 130, 285–309 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  49. Lon97.
    Longo R.: An analogue of the Kac–Wakimoto formula and black hole conditional entropy. Commun. Math. Phys. 186, 451–479 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  50. Lon03.
    Longo R.: Conformal subnets and intermediate subfactors. Commun. Math. Phys. 237, 7–30 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. Lon08.
    Longo, R.: Lecture Notes on Conformal Nets. Part II. Nets of von Neumann Algebras. Preliminary Lecture Notes.
  52. LR95.
    Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995)MathSciNetCrossRefMATHGoogle Scholar
  53. LR97.
    Longo R., Roberts J.E.: A theory of dimension. K-Theory 11, 103–159 (1997)MathSciNetCrossRefMATHGoogle Scholar
  54. LR04.
    Longo R., Rehren K.-H.: Local fields in boundary conformal QFT. Rev. Math. Phys. 16, 909–960 (2004)MathSciNetCrossRefMATHGoogle Scholar
  55. LW11.
    Longo R., Witten E.: An algebraic construction of boundary quantum field theory. Commun. Math. Phys. 303, 213–232 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  56. ML98.
    Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5, 2nd edn, Springer, New York (1998)Google Scholar
  57. Mug99.
    Müger M.: On charged fields with group symmetry and degeneracies of Verlinde’s matrix S. Ann. Inst. H. Poincaré (Phys. Théor.) 71, 359–394 (1999)MathSciNetMATHGoogle Scholar
  58. Mug00.
    Müger M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150, 151–201 (2000)MathSciNetCrossRefMATHGoogle Scholar
  59. Mug03.
    Müger M.: On the structure of modular categories. Proc. Lond. Math. Soc. 87, 291–308 (2003)MathSciNetCrossRefMATHGoogle Scholar
  60. Mug10.
    Müger, M.: On the structure and representation theory of rational chiral conformal theories. Unpublished manuscript (2010)Google Scholar
  61. Mug12.
    Müger, M.: Modular categories. In: Heunen, C. et al. (eds.) Quantum Physics and Linguistics. Oxford University Press (2013). arXiv:1201.6593
  62. Mun01.
    Mund J.: The Bisognano–Wichmann theorem for massive theories. Ann. H. Poincaré 2, 907–926 (2001)MathSciNetCrossRefMATHGoogle Scholar
  63. Pat92.
    Paterson A.L.T.: Nuclear C*-algebras have amenable unitary groups. Proc. Am. Math. Soc. 114, 719–721 (1992)MathSciNetMATHGoogle Scholar
  64. Ped79.
    Pedersen G.K.: C *-Algebras and Their Automorphism Groups. London Mathematical Society Monographs, vol. 14. Academic Press, Inc., New York (1979)Google Scholar
  65. Pop95.
    Popa S.: Classification of Subfactors and their Endomorphisms. CBMS Regional Conference Series in Mathematics, vol. 86. American Mathematical Society, Providence, RI (1995)CrossRefGoogle Scholar
  66. Reh90.
    Rehren K.-H.: Braid group statistics and their superselection rules. In: Kastler, D. (ed.) The Algebraic Theory of Superselection Sectors, pp. 333–355. World Scientific Publishing, River Edge, NJ (1990)Google Scholar
  67. Reh00.
    Rehren K.-H.: Chiral observables and modular invariants. Commun. Math. Phys. 208, 689–712 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  68. Reh15.
    Rehren, K.-H.: Algebraic conformal quantum field theory in perspective. In: Brunetti, R. et al. (eds.) Advances in Algebraic Quantum Field Theory, Mathematical Physics Studies, pp. 331–364. Springer, New York (2015)Google Scholar
  69. RSW09.
    Rowell E., Stong R., Wang Z.: On classification of modular tensor categories. Commun. Math. Phys. 292, 343–389 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  70. RT13.
    Rehren K.-H., Tedesco G.: Multilocal fermionization. Lett. Math. Phys. 103, 19–36 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  71. Sew80.
    Sewell G.L.: Relativity of temperature and the Hawking effect. Phys. Lett. 79, 23–24 (1980)MathSciNetCrossRefGoogle Scholar
  72. Str81.
    Strǎtilǎ, Ş.: Modular Theory in Operator Algebras. Editura Academiei Republicii Socialiste România, Bucharest; Abacus Press, Tunbridge Wells (1981)Google Scholar
  73. Tak70.
    Takesaki M.: Algebraic equivalence of locally normal representations. Pac. J. Math. 34, 807–816 (1970)MathSciNetCrossRefMATHGoogle Scholar
  74. Tak72.
    Takesaki M.: Conditional expectations in von Neumann algebras. J. Funct. Anal. 9, 306–321 (1972)MathSciNetCrossRefMATHGoogle Scholar
  75. Tak02.
    Takesaki M.: Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences, vol. 124. Springer, Berlin (2002)Google Scholar
  76. Tak03.
    Takesaki M.: Theory of Operator Algebras II. Encyclopaedia of Mathematical Sciences, vol. 125. Springer, Berlin (2003)CrossRefGoogle Scholar
  77. Tom57.
    Tomiyama J.: On the projection of norm one in W *-algebras. Proc. Jpn. Acad. 33, 608–612 (1957)MathSciNetCrossRefMATHGoogle Scholar
  78. Tur10.
    Turaev, V.: Homotopy Quantum Field Theory. EMS Tracts in Mathematics, vol. 10. Eur. Math. Soc. Zürich (2010) (Appendix 5 by Michael Müger and Appendices 6 and 7 by Alexis Virelizier) Google Scholar
  79. Was98.
    Wassermann A.: Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133, 467–538 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  80. Wei11.
    Weiner M.: An algebraic version of Haag’s theorem. Commun. Math. Phys. 305, 469–485 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  81. Wie93.
    Wiesbrock H.-W.: Half-sided modular inclusions of von-Neumann-algebras. Commun. Math. Phys. 157, 83–92 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  82. Xu00.
    Xu F.: Algebraic orbifold conformal field theories. Proc. Natl. Acad. Sci. U.S.A. 97, 14069 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly

Personalised recommendations