Skip to main content
Log in

KAM for Beating Solutions of the Quintic NLS

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the nonlinear Schrödinger equation of degree five on the circle \({\mathbb{T}= \mathbb{R} / 2\pi}\). We prove the existence of quasi-periodic solutions with four frequencies which bifurcate from “resonant” solutions [studied in Grébert and Thomann (Ann Inst Henri Poincaré Anal Non Linéaire 29(3):455–477, 2012)] of the system obtained by truncating the Hamiltonian after one step of Birkhoff normal form, exhibiting recurrent exchange of energy between some Fourier modes. The existence of these quasi-periodic solutions is a purely nonlinear effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys. 234(2), 253–285 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bambusi D., Berti M.: A Birkhoff-Lewis type theorem for some Hamiltonian PDEs. SIAM J. Math. Anal. 37(1), 83–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berti M., Biasco L., Procesi M.: KAM theory for the Hamiltonian derivative wave equation. Ann. Sci. Éc. Norm. Supér. 46(2), 301–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biasco L., Chierchia L.: On the measure of Lagrangian invariant tori in nearly-integrable mechanical systems. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(4), 423–432 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biasco L., Di Gregorio L.: A Birkhoff–Lewis type theorem for the nonlinear wave equation. Arch. Ration. Mech. Anal. 196(1), 303–362 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Intern. Math. Res. Not. 11, 475–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain J.: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6(2), 201–230 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain J.: On diffusion in high-dimensional Hamiltonian systems and PDE. J. Anal. Math. 80, 1–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chierchia L., You J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211, 497–525 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181(1), 39–113 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Corsi, L., Feola, R., Procesi, M.: Finite-dimensional invariant tori for tame vector fields. arXiv:1603.01204 (2016)

  13. Craig W., Wayne C.E.: Newton’s method and periodic solutions of nonlinear wave equation. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eliasson L.H.: Almost reducibility of linear quasi-periodic systems. Proc. Symp. Pure Math 69, 679–705 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eliasson H., Kuksin S.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172(1), 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geng J., Yi Y.: Quasi-periodic solutions in a nonlinear Schrödinger equation. J. Diff. Equ. 233(2), 512–542 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Grébert B., Paturel E., Thomann L.: Beating effects in cubic Schrödinger systems and growth of Sobolev norms. Nonlinearity 26, 1361–1376 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Grébert B., Thomann L.: Resonant dynamics for the quintic nonlinear Schrödinger equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29(3), 455–477 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Guardia M., Haus E., Procesi M.: Growth of Sobolev norms for the defocusing analytic NLS on T 2. Adv. Math. 301(1), 615–692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guardia M., Kaloshin V.: Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation. J. Eur. Math. Soc. (JEMS) 17, 71–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hani, Z., Pausader, B., Tzvetkov, N., Visciglia, N.: Modified scattering for the cubic Schrödinger equation on product spaces and applications. Forum Math. Pi 3, e4 (2015)

  22. Haus E., Procesi M.: Growth of Sobolev norms for the quintic NLS on T 2. Anal. PDE 8, 883–922 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haus E., Thomann L.: Dynamics on resonant clusters for the quintic nonlinear Schrödinger equation. Dyn. Partial Differ. Equ. 10(2), 157–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funks. Anal. i Prilozhen 21:22–37, 95 (1987)

  25. Kuksin S.B., Pöschel J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143(1), 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang Z., You J.: Quasi-periodic solutions for 1D Schrödinger equation with higher order nonlinearity SIAM. J. Math. Anal. 36, 1965–1990 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Procesi C., Procesi M.: A normal form for the Schrödinger equation with analytic non-linearities. Commun. Math. Phys. 312(2), 501–557 (2012)

    Article  ADS  MATH  Google Scholar 

  28. Procesi C., Procesi M.: A KAM algorithm for the resonant non-linear Schrödinger equation. Adv. Math. 272, 399–470 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Procesi C., Procesi M.: Reducible quasi-periodic solutions for the non linear Schrödinger equation. Boll. Unione Mat. Ital. 9(2), 189–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Procesi M., Procesi C., Van Nguyen B.: The energy graph of the non-linear Schrödinger equation. Rend. Lincei Mat. Appl. 24, 1–73 (2013)

    MATH  Google Scholar 

  31. Procesi M., Xu X.: Quasi-Töplitz Functions in KAM Theorem. SIAM J. Math. Anal. 45(4), 2148–2181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Van Nguyen, B.: Characteristic polynomials of the color marked graphs, related to the normal form of the nonlinear Schrödinger equation. arXiv:1203.6015 (2012)

  33. Wayne E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Haus.

Additional information

Communicated by W. Schlag

This research was supported by the European Research Council under FP7, Project “Hamiltonian PDEs and small divisor problem: a dynamical systems approach” (HamPDEs). The first author was also supported by Programme STAR, financed by UniNA and Compagnia di San Paolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haus, E., Procesi, M. KAM for Beating Solutions of the Quintic NLS. Commun. Math. Phys. 354, 1101–1132 (2017). https://doi.org/10.1007/s00220-017-2925-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2925-7

Navigation