Skip to main content
Log in

Ballistic Transport for the Schrödinger Operator with Limit-Periodic or Quasi-Periodic Potential in Dimension Two

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of ballistic transport for the Schrödinger operator with limit-periodic or quasi-periodic potential in dimension two. This is done under certain regularity assumptions on the potential which have been used in prior work to establish the existence of an absolutely continuous component and other spectral properties. The latter include detailed information on the structure of generalized eigenvalues and eigenfunctions. These allow one to establish the crucial ballistic lower bound through integration by parts on an appropriate extension of a Cantor set in momentum space, as well as through stationary phase arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asch J., Knauf A.: Motion in periodic potentials. Nonlinearity 11, 175–200 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Avron J., Simon B.: Almost periodic Schrödinger operators, I. Limit periodic potentials. Comm. Math. Phys. 82, 101–120 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bellissard J., Schulz-Baldes H.: Subdiffusive quantum transport for 3D Hamiltonians with absolutely continuous spectra. J. Stat. Phys. 99, 587–594 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bourgain J.: Anderson localization for quasi-periodic lattice Schrödinger operators on \({\mathbb{Z}^d}\), d arbitrary. Geom. Funct. Anal. 17, 682–706 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain J., Goldstein M., Schlag W.: Anderson localization for Schrödinger operators on \({\mathbb{Z}^2}\) with quasi-periodic potential. Acta Math. 188, 41–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chulaevsky V.A., Dinaburg E.I.: Methods of KAM-theory for long-range quasi-periodic operators on \({\mathbb{Z}^{\nu}}\). Pure Point Spectrum. Commun. Math. Phys. 153, 559–577 (1993)

    Article  ADS  Google Scholar 

  7. Chulaevsky V., Delyon F.: Purely absolutely continuous spectrum for almost Mathieu operators. J. Stat. Phys. 55, 1279–1284 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Combes J.-M.: Connections between quantum dynamics and spectral properties of time-evolution operators. Differ. Equ. Appl. Math. Phys. Math. Sci. Eng. 192, 59–68 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Damanik D., Lenz D., Stolz G.: Lower transport bounds for one-dimensional continuum Schrödinger operators. Math. Ann. 336, 361–389 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Damanik D., Tcheremchantsev S.: Power-law bounds on transfer matrices and quantum dynamics in one dimension. Comm. Math. Phys. 236, 513–534 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Damanik D., Tcheremchantsev S.: Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading. J. Anal. Math. 97, 103–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Damanik D., Tcheremchantsev S.: Upper bounds in quantum dynamics. J. Am. Math. Soc. 20, 799–827 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Damanik D., Tcheremchantsev S.: A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators. Discret. Contin. Dyn. Syst. 28, 1381–1412 (2010)

    Article  MATH  Google Scholar 

  14. Dinaburg E.I., Sinai Ya.: The one-dimensional Schrödinger equation with a quasi-periodic potential. Funct. Anal. Appl. 9, 279–289 (1975)

    Article  MATH  Google Scholar 

  15. Eliasson L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Comm. Math. Phys. 146, 447–482 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gel’fand I.M.: Expansion in eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR 73, 1117–1120 (1950) (in Russian)

    Google Scholar 

  17. Germinet F., Kiselev A., Tcheremchantsev S.: Transfer matrices and transport for Schrödinger operators. Ann. Inst. Fourier 54, 787–830 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guarneri I.: Spectral properties of quantum diffusion on discrete lattices. Europhys. Lett. 10, 95–100 (1989)

    Article  ADS  Google Scholar 

  19. Guarneri I.: On an estimate concerning quantum diffusion in the presence of a fractional spectrum. Europhys. Lett. 21, 729–733 (1993)

    Article  ADS  Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, p. 256. Springer, Berlin (1990)

  21. Jitomirskaya S., Schulz-Baldes H., Stolz G.: Delocalization in random polymer models. Comm. Math. Phys. 233, 27–48 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Johnson R., Moser J.: The rotation number for almost periodic potentials. Comm. Math. Phys. 84, 403–438 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Karpeshina Yu., Lee Y.-R.: Spectral properties of polyharmonic operators with limit-periodic potential in dimension two. J. Anal. Math. 102, 225–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karpeshina Yu., Lee Y.-R.: Absolutely continuous spectrum of a polyharmonic operator with a limit-periodic potential in dimension two. Comm. Partial Differ. Equ. 33, 1711–1728 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karpeshina Yu., Lee Y.-R.: Spectral properties of a limit-periodic Schrödinger operator in dimension two. J. Anal. Math. 120, 1–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karpeshina Yu., Shterenberg R.: Multiscale analysis in momentum space for quasi-periodic potential in dimension two. J. Math. Phys. 54, 073507 (2013) 1–92

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Karpeshina, Yu., Shterenberg, R.: Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two (2014). arXiv:1408.5660

  28. Kiselev A., Last Y.: Solutions, spectrum, and dynamics for Schrödinger operators on infinite domains. Duke Math. J. 102, 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Last Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142, 406–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Molchanov S.A., Chulaevsky V.: The structure of a spectrum of lacunary-limit-periodic Schrödinger operator. Funct. Anal. Appl. 18, 343–344 (1984)

    Article  MATH  Google Scholar 

  31. Moser J., Pöschel J.: An extension of a result by Dinaburg and Sinai on quasiperiodic potentials. Comment. Math. Helv. 59, 39–85 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pastur L., Figotin A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  33. Radin C., Simon B.: Invariant domains for the time-dependent Schrödinger equation. J. Differ. Equ. 29, 289–296 (1978)

    Article  ADS  MATH  Google Scholar 

  34. Reed M., Simon B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  35. Rüssmann H.: On the one dimensional Schrödinger equation with quasi-periodic potential. Ann. N.Y. Acad. Sci. 357, 90–107 (1980)

    Article  ADS  Google Scholar 

  36. Skriganov, M.M., Sobolev, A.V.: On the spectrum of a limit-periodic Schrödinger operator. Algebra i Analiz 17, 5 (2005); English translation: St. Petersburg Math. J. 17, 815–833 (2006)

  37. Tcheremchantsev S.: Mixed lower bounds for quantum transport. J. Funct. Anal. 197, 247–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Karpeshina.

Additional information

Communicated by Y. Karpeshina

Supported in part by NSF-Grants DMS-1201048 (Y.K.) and DMS-1069320 (G.S.), National Research Foundation of Korea (NRF) grants funded by the Korea Government (MSIP) No. 2011-0013073 and (MOE) No. 2014R1A1A2058848 (Y.-R.L.) and Simons Foundation Grant No. 312879 (R.S.).

The authors are thankful to the Isaac Newton Institute for Mathematical Sciences (Cambridge University, UK) for support and hospitality during the program Periodic and Ergodic Spectral Problems where work on this paper was undertaken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpeshina, Y., Lee, YR., Shterenberg, R. et al. Ballistic Transport for the Schrödinger Operator with Limit-Periodic or Quasi-Periodic Potential in Dimension Two. Commun. Math. Phys. 354, 85–113 (2017). https://doi.org/10.1007/s00220-017-2911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2911-0

Navigation