Skip to main content
Log in

Semiclassical Soliton Ensembles for the Three-Wave Resonant Interaction Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The three-wave resonant interaction equations are a non-dispersive system of partial differential equations with quadratic coupling describing the time evolution of the complex amplitudes of three resonant wave modes. Collisions of wave packets induce energy transfer between different modes via pumping and decay. We analyze the collision of two or three packets in the semiclassical limit by applying the inverse-scattering transform. Using WKB analysis, we construct an associated semiclassical soliton ensemble, a family of reflectionless solutions defined through their scattering data, intended to accurately approximate the initial data in the semiclassical limit. The map from the initial packets to the soliton ensemble is explicit and amenable to asymptotic and numerical analysis. Plots of the soliton ensembles indicate the space–time plane is partitioned into regions containing either quiescent, slowly varying, or rapidly oscillatory waves. This behavior resembles the well-known generation of dispersive shock waves in equations such as the Korteweg–de Vries and nonlinear Schrödinger equations, although the physical mechanism must be different in the absence of dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M., Haberman R.: Resonantly coupled nonlinear evolution equations. J. Math. Phys. 16, 2301–2305 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baldwin G.: An Introduction to Nonlinear Optics. Plenum, New York (1974)

    Google Scholar 

  3. Baronio F., Conforti M., Andreana M., Couderc V., De Angelis C., Wabnitz S., Barthélémy A., Degasperis A.: Frequency generation and solitonic decay in three-wave interactions. Opt. Express 17, 13889–13894 (2009)

    Article  ADS  Google Scholar 

  4. Beale J.: Large-time behavior of discrete velocity Boltzmann equations. Commun. Math. Phys. 106, 659–678 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Beals R., Coifman R.: Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math. 37, 39–90 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beals R., Coifman R.: Inverse scattering and evolution equations. Commun. Pure Appl. Math. 38, 29–42 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beals R., Coifman R.: Scattering and inverse scattering for first-order systems: II. Inverse Probl. 3, 577–593 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bertola M., Tovbis A.: Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. 2010, 2119–2167 (2010)

    MATH  Google Scholar 

  9. Bertola M., Tovbis A.: Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé I. Commun. Pure Appl. Math. 66, 678–752 (2013)

    Article  MATH  Google Scholar 

  10. Biondini, G., El, G., Hoefer, M., Miller, P. (eds).: Dispersive Hydrodynamics. Phys. D 333, 1–336 (2016)

  11. Biondini G., Wang Q.: Novel systems of resonant wave interactions. J. Phys. A 48, 225203 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Broadwell J.: Shock structure in a simple discrete velocity gas. Phys. Fluids 7, 1243–1247 (1964)

    Article  ADS  MATH  Google Scholar 

  13. Buckingham R.: Semiclassical spectral confinement for the sine-Gordon equation. Math. Comput. Simul. 82, 1030–1037 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Buckingham, R., Jenkins, R., Miller, P.: Semiclassical soliton ensembles for the three-wave resonant interaction equations: asymptotic behavior for small time (in preparation)

  15. Buckingham R., Miller P.: Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation. Phys. D 237, 2296–2341 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buckingham R., Miller P.: The sine-Gordon equation in the semiclassical limit: critical behavior near a separatrix. J. Anal. Math. 118, 397–492 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Buckingham R., Miller P.: The sine-Gordon equation in the semiclassical limit: dynamics of fluxon condensates. Mem. Am. Math. Soc. 225(1059), 1–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Claeys T., Grava T.: Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann–Hilbert approach. Commun. Math. Phys. 286, 979–1009 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Claeys T., Grava T.: Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg–de Vries equation in the small-dispersion limit. Commun. Pure Appl. Math. 63, 203–232 (2010)

    Article  MATH  Google Scholar 

  20. Claeys T., Grava T.: Solitonic asymptotics for the Korteweg–de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42, 2132–2154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Degasperis A., Conforti M., Baronio F., Wabnitz S., Lombardo S.: The three-wave resonant interaction equations: spectral and numerical methods. Lett. Math. Phys. 96, 367–403 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. DiFranco J., Miller P.: The semiclassical modified nonlinear Schrödinger equation. I. Modulation theory and spectral analysis. Phys. D 237, 947–997 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. DiFranco J., Miller P.: The semiclassical modified nonlinear Schrödinger equation II: asymptotic analysis of the Cauchy problem. The elliptic region for transsonic initial data. Contemp. Math. 593, 29–81 (2013)

    Article  MATH  Google Scholar 

  24. DiFranco J., Miller P., Muite B.: On the modified nonlinear Schrödinger equation in the semiclassical limit: supersonic, subsonic, and transsonic behavior. Acta Math. Sci. Ser. B Engl. Ed. 31, 2343–2377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gerdjikov V., Kulish P.: The generating operator for the N × N linear system. Phys. D 3, 549–564 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ibragimov E., Struthers A., Kaup D., Khaydarov J., Singer K.: Three-wave interaction solitons in optical parametric amplification. Phys. Rev. E 59, 6122–6137 (1999)

    Article  ADS  Google Scholar 

  27. Jenkins R., McLaughlin K.: Semiclassical limit of focusing NLS for a family of square barrier initial data. Commun. Pure Appl. Math. 67, 246–320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jin S., Levermore C., McLaughlin D.: The semiclassical limit of the defocusing NLS hierarchy. Commun. Pure Appl. Math. 52, 613–654 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kamvissis, S., McLaughlin, K., Miller, P.: Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. Ann. Math. Stud. 154 (2003)

  30. Kaup D.: The three-wave interaction—a nondispersive phenomenon. Stud. Appl. Math. 55, 9–44 (1976)

    Article  MathSciNet  Google Scholar 

  31. Kaup D., Reiman A., Bers A.: Space–time evolution of nonlinear three-wave interactions: I. Interaction in a homogeneous medium. Rev. Mod. Phys. 51, 275–310 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  32. Kaup D., Van Gorder R.: The inverse scattering transform and squared eigenfunctions for the nondegenerate 3 ×  3 operator and its soliton structure. Inverse Probl. 26, 055005 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Klaus M., Shaw J.: Purely imaginary eigenvalues of Zakharov–Shabat systems. Phys. Rev. E 65, 36607–36611 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lange C., Newell A.: Spherical shells like hexagons: cylinders prefer diamonds (part 1). J. Appl. Mech. 40, 575–581 (1973)

    Article  ADS  MATH  Google Scholar 

  35. Lax P., Levermore C.: The small dispersion limit of the Korteweg–de Vries equation. I. Commun. Pure Appl. Math. 36, 253–290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lax P., Levermore C.: The small dispersion limit of the Korteweg–de Vries equation. II. Commun. Pure Appl. Math. 36, 571–593 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lax P., Levermore C.: The small dispersion limit of the Korteweg–de Vries equation. III. Commun. Pure Appl. Math. 36, 809–829 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ledoux V., Malham S., Thümmler V.: Grassmannian spectral shooting. Math. Comput. 79, 1585–1619 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lee L., Lyng G.: A second look at the Gaussian semiclassical soliton ensemble for the focusing nonlinear Schrödinger equation. Phys. Lett. A 377, 1179–1188 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Lee L., Lyng G., Vankova I.: The Gaussian semiclassical soliton ensemble and numerical methods for the focusing nonlinear Schrödinger equation. Phys. D 241, 1767–1781 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lyng G.: Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation: recent developments. Contemp. Math. 635, 91–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lyng G., Miller P.: The N-soliton of the focusing nonlinear Schrödinger equation for N large. Commun. Pure Appl. Math. 60, 951–1026 (2007)

    Article  MATH  Google Scholar 

  43. Mak W., Malomed B., Chu P.: Three-wave gap solitons in wave guides with quadratic nonlinearity. Phys. Rev. E 58, 6708–6722 (1998)

    Article  ADS  Google Scholar 

  44. Manley J., Rowe H.: Some general properties of nonlinear elements—Part I. General energy relations. Proc. IRE 44, 904–913 (1956)

    Article  Google Scholar 

  45. Martin R., Segur H.: Toward a general solution of the three-wave partial differential equations. Stud. Appl. Math. 137, 70–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. McGoldrick L.: Resonant interactions among capillary-gravity waves. J. Fluid Mech. 21, 305–331 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Miller P.: Asymptotics of semiclassical soliton ensembles: rigorous justification of the WKB approximation. Int. Math. Res. Not. IMRN 2002, 383–454 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Miller P.: Riemann–Hilbert problems with lots of discrete spectrum. Contemp. Math. 458, 163–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Miller P.: On the generation of dispersive shock waves. Phys. D 333, 66–83 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  50. Newell A.: Rossby wave packet interactions. J. Fluid Mech. 35, 255–271 (1969)

    Article  ADS  MATH  Google Scholar 

  51. Novikov S., Manakov S., Pitaevski L., Zakharov V.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    Google Scholar 

  52. Rauch, J.: Hyperbolic Partial Differential Equations and Geometric Optics. Graduate Studies in Mathematics, vol 133. American Mathematical Society, Providence, RI (2012)

  53. Reiman A.: Space–time evolution of nonlinear three-wave interactions: II. Interaction in an inhomogeneous medium. Rev. Mod. Phys. 51, 311–330 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  54. Sagdeev, R., Galeev, A.: Nonlinear Plasma Theory. Frontiers in Physics, vol 34, W. A. Benjamin, New York, NY (1969)

  55. Shchesnovich V., Yang J.: Higher-order solitons in the N-wave system. Stud. Appl. Math. 110, 297–332 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Stenflo L.: Resonant three-wave interactions in plasmas. Phys. Scr. T50, 15–19 (1994)

    Article  ADS  Google Scholar 

  57. Sun C., Xu Y., Cui W., Huang G., Szeftel J., Hu B.: Three-wave soliton excitations in a disk-shaped Bose-Einstein condensate. Int. J. Mod. Phys. B 19, 3563–3574 (2005)

    Article  ADS  MATH  Google Scholar 

  58. Tovbis A., Venakides S., Zhou X.: On semiclassical (zero dispersion limit) solitions of the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 57, 877–985 (2004)

    Article  MATH  Google Scholar 

  59. Tovbis A., Venakides S., Zhou X.: On the long-time limit of semiclassical (zero dispersion limit) solitions of the focusing nonlinear Schrödinger equation: pure radiation case. Commun. Pure Appl. Math. 59, 1379–1432 (2006)

    Article  MATH  Google Scholar 

  60. Zakharov, V., Manakov, S.: Resonant interaction of wave packets in nonlinear media. Sov. Phys. JETP Lett. 18, 243–245, (1973). Translated from Pis’ma Zh. Eksp. Teor. Fiz. 18, 413–417

  61. Zakharov, V., Manakov, S.: The theory of resonant interaction of wave packets in nonlinear media. Sov. Phys. JETP 42, 842–850 (1975). Translated from Zh. Eksp. Teor. Fiz. 69, 1654–1673

  62. Zakharov, V., Shabat, A.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69, (1972). Translated from Z. Eksp. Teor. Fiz. 61, 118–134, (1971).

  63. Zhou X.: Direct and inverse scattering transforms with arbitrary spectral singularities. Commun. Pure Appl. Math. 42, 895–938 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhou X.: The Riemann–Hilbert problem and inverse scattering. SIAM J. Math. Anal. 20, 966–986 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Buckingham.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckingham, R.J., Jenkins, R.M. & Miller, P.D. Semiclassical Soliton Ensembles for the Three-Wave Resonant Interaction Equations. Commun. Math. Phys. 354, 1015–1100 (2017). https://doi.org/10.1007/s00220-017-2897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2897-7

Navigation