Skip to main content
Log in

Resonances for Open Quantum Maps and a Fractal Uncertainty Principle

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study eigenvalues of quantum open baker’s maps with trapped sets given by linear arithmetic Cantor sets of dimensions \({\delta\in (0,1)}\). We show that the size of the spectral gap is strictly greater than the standard bound \({\max(0,{1\over 2}-\delta)}\) for all values of \({\delta}\), which is the first result of this kind. The size of the improvement is determined from a fractal uncertainty principle and can be computed for any given Cantor set. We next show a fractal Weyl upper bound for the number of eigenvalues in annuli, with exponent which depends on the inner radius of the annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balázs N.L., Voros A.: The quantized baker’s transformation. Ann. Phys. 190, 1–31 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Barkhofen S., Weich T., Potzuweit A., Stöckmann H.-J., Kuhl U., Zworski M.: Experimental observation of the spectral gap in microwave n-disk systems. Phys. Rev. Lett. 110, 164102 (2013)

    Article  ADS  Google Scholar 

  3. Borthwick D.: Distribution of resonances for hyperbolic surfaces. Exp. Math. 23, 25–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borthwick D., Weich T.: Symmetry reduction of holomorphic iterated function schemes and factorization of Selberg zeta functions. J. Spectr. Th. 6, 267–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain J.: Bounded orthogonal systems and the \({\Lambda(p)}\)-set problem. Acta Math. 162, 227–245 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Dyatlov, S.: Spectral gaps without the pressure condition, preprint, arXiv:1612.09040

  7. Brun T.A., Schack R.: Realizing the quantum baker’s map on a NMR quantum computer. Phys. Rev. A 59, 2649 (1999)

    Article  ADS  Google Scholar 

  8. Carlo G.G., Benito R.M., Borondo F.: Theory of short periodic orbits for partially open quantum maps. Phys. Rev. E 94, 012222 (2016)

    Article  ADS  Google Scholar 

  9. Chen, X., Seeger, A.: Convolution powers of Salem measures with applications, preprint, arXiv:1509.00460

  10. Datchev K., Dyatlov S.: Fractal Weyl laws for asymptotically hyperbolic manifolds. Geom. Funct. Anal. 23, 1145–1206 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Degli Esposti M., Nonnenmacher S., Winn B.: Quantum variance and ergodicity for the baker’s map. Commun. Math. Phys. 263, 325–352 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dolgopyat D.: On decay of correlations in Anosov flows. Ann. Math. 147(2), 357–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dorin D., Chun-Kit L.: Some reductions of the spectral set conjecture to integers. Math. Proc. Camb. Philos. Soc. 156, 123–135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dyatlov S.: Resonance projectors and asymptotics for r-normally hyperbolic trapped sets. J. Am. Math. Soc. 28, 311–381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyatlov, S.: Improved fractal Weyl bounds for hyperbolic manifolds, with an appendix with David Borthwick and Tobias Weich. J. Europ. Math. Soc. arXiv:1512.00836

  16. Dyatlov, S., Jin, L.: Dolgopyat’s method and the fractal uncertainty principle, preprint, arXiv:1702.03619

  17. Dyatlov S., Zahl J.: Spectral gaps, additive energy, and a fractal uncertainty principle. Geom. Funct. Anal. 26, 1011–1094 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ermann L., Frahm K.M., Shepelyansky D.L.: Google matrix analysis of directed networks. Rev. Mod. Phys. 87, 1261 (2015)

    Article  ADS  Google Scholar 

  19. Faure F., Tsujii M.: Band structure of the Ruelle spectrum of contact Anosov flows. C R Math. Acad. Sci. Paris 351, 385–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Faure, F., Tsujii, M.: The semiclassical zeta function for geodesic flows on negatively curved manifolds, preprint. Invent. Math. arXiv:1311.4932

  21. Faure, F., Tsujii, M.: Prequantum transfer operator for Anosov diffeomorphism, Astérisque 375(2015)

  22. Fuglede B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gaspard P., Rice S.: Scattering from a classically chaotic repeller. J. Chem. Phys. 90, 2225–2241 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  24. Guillopé L., Lin K.K., Zworski M.: The Selberg zeta function for convex co-compact Schottky groups. Commun. Math. Phys. 245:1, 149–176 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hannay J.H., Keating J.P., de Almeida A.M.O.: Optical realization of the baker’s transformation. Nonlinearity 7, 1327–1342 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, (1934)

  27. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, (1991)

  28. Ikawa M.: Decay of solutions of the wave equation in the exterior of several convex bodies. Ann. Inst. Fourier 38, 113–146 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jakobson D., Naud F.: On the critical line of convex co-compact hyperbolic surfaces. Geom. Funct. Anal. 22, 352–368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Keating J.P., Nonnenmacher S., Novaes M., Sieber M.: On the resonance eigenstates of an open quantum baker map. Nonlinearity 21, 2591–2624 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Keating J.P., Novaes M., Prado S.D., Sieber M.: Semiclassical structure of chaotic resonance eigenfunctions. Phys. Rev. Lett. 97, 150406 (2006)

    Article  ADS  Google Scholar 

  32. Łaba I.: The spectral set conjecture and multiplicative properties of roots of polynomials. J. Lond. Math. Soc. 65, 661–671 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Łaba, I., Wang, H.: Decoupling and near-optimal restriction estimates for Cantor sets, preprint, arXiv:1607.08302

  34. Lu W., Sridhar S., Zworski M.: Fractal Weyl laws for chaotic open systems. Phys. Rev. Lett. 91, 154101 (2003)

    Article  ADS  Google Scholar 

  35. Malikiosis, R.-D., Kolountzakis, M.: Fuglede’s conjecture on cyclic groups of order p n q, preprint, arXiv:1612.01328

  36. Naud F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. de l’ENS 38(4), 116–153 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Naud F.: Density and location of resonances for convex co-compact hyperbolic surfaces. Invent. Math. 195, 723–750 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Nonnenmacher S.: Spectral problems in open quantum chaos. Nonlinearity 24, R123 (2011)

    Article  ADS  MATH  Google Scholar 

  39. Nonnenmacher S., Rubin M.: Resonant eigenstates in quantum chaotic scattering. Nonlinearity 20, 1387–1420 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Nonnenmacher S., Sjöstrand J., Zworski M.: From open quantum systems to open quantum maps. Commun. Math. Phys. 304, 1, 1–48 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Nonnenmacher S., Sjöstrand J., Zworski M.: Fractal Weyl law for open quantum chaotic maps. Ann. Math. 179(2), 179–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nonnenmacher S., Zworski M.: Fractal Weyl laws in discrete models of chaotic scattering. J. Phys. A 38, 10683–10702 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Nonnenmacher S., Zworski M.: Distribution of resonances for open quantum maps. Commun. Math. Phys. 269, 311–365 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Nonnenmacher S., Zworski M.: Quantum decay rates in chaotic scattering. Acta Math. 203, 149–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Novaes M.: Resonances in open quantum maps. J. Phys. A 46, 143001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Novaes M., Pedrosa J.M., Wisniacki D., Carlo G.G., Keating J.P.: Quantum chaotic resonances from short periodic orbits. Phys. Rev. E 80, 035202 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  47. Patterson S.J.: On a lattice-point problem in hyperbolic space and related questions in spectral theory. Ark. Mat. 26, 167–172 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Petkov V., Stoyanov L.: Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function. Anal. PDE 3, 427–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Potzuweit A., Weich T., Barkhofen S., Kuhl U., Stöckmann H.-J., Zworski M.: Weyl asymptotics: from closed to open systems. Phys. Rev. E 86, 066205 (2012)

    Article  ADS  Google Scholar 

  50. Saraceno M.: Classical structures in the quantized baker transformation. Ann. Phys. 199, 37–60 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Saraceno M., Voros A.: Towards a semiclassical theory of the quantum baker’s map. Phys. D Nonlinear Phenom. 79, 206–268 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Shmerkin, P., Suomala, V.: A class of random Cantor measures, with applications, preprint, arXiv:1603.08156

  53. Sjöstrand J.: Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J. 60:1, 1–57 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sjöstrand J., Zworski M.: Fractal upper bounds on the density of semiclassical resonances. Duke Math. J. 137, 381–459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Stoyanov L.: Spectra of Ruelle transfer operators for axiom A flows. Nonlinearity 24, 1089–1120 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Stoyanov L.: Non-integrability of open billiard flows and Dolgopyat-type estimates. Erg. Theory Dyn. Syst. 32, 295–313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tao, T., Vu, V.: Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105. Cambridge University Press, (2006)

  58. Titchmarsh, E.C.: The Theory of Functions, Second Edition. Oxford University Press, (1939)

  59. Wiener N., Wintner A.: Fourier–Stieltjes transforms and singular infinite convolutions. Am. J. Math. 60, 513–522 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zelditch, S.: Recent developments in mathematical quantum chaos, Curr. Dev. Math. 115–204 (2009)

  61. Zworski M.: Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces. Invent. Math. 136, 353–409 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Zworski, M.: Semiclassical analysis, Graduate Studies in Mathematics, vol. 138. AMS, Providence (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Dyatlov.

Additional information

Communicated by J. Marklof

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyatlov, S., Jin, L. Resonances for Open Quantum Maps and a Fractal Uncertainty Principle. Commun. Math. Phys. 354, 269–316 (2017). https://doi.org/10.1007/s00220-017-2892-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2892-z

Navigation