Advertisement

Communications in Mathematical Physics

, Volume 352, Issue 3, pp 1121–1152 | Cite as

The Existence of Stable BGK Waves

  • Yan Guo
  • Zhiwu LinEmail author
Article

Abstract

The 1D Vlasov-Poisson system is the simplest kinetic model for describing an electrostatic collisionless plasma, and the BGK waves are its famous exact steady solutions. They play an important role on the long time dynamics of a collisionless plasma as potential “final states” or “attractors”, thanks to many numerical simulations and observations. Despite their importance, the existence of stable BGK waves has been an open problem since the discovery of BGK waves in 1957. In this paper, linearly stable BGK waves are constructed near homogeneous states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V.I.: Mathematical methods of classical mechanics. In: Translated from the Russian by Vogtmann K., Weinstein, A. (eds) Graduate Texts in Mathematics, 2nd edn. Springer, New York, pp 60 (1989)Google Scholar
  2. 2.
    Armstrong T., Montgomery D.: Asymptotic state of the two-stream instability. J. Plasma Phys. 1(4), 425–433 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    Bellan P.M.: Fundamentals of Plasma Physics. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  4. 4.
    Manfredi G., Bertrand P.: Stability of Bernstein-Greene-Kruskal modes. Phys. Plasmas. 7(6), 2425–2431 (2000)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Brunetti M., Califano F., Pegoraro F.: Asymptotic evolution of nonlinear Landau damping. Phys. Rev. E. 62, 4109–4114 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Bernstein I., Greene J., Kruskal M.: Exact nonlinear plasma oscillations. Phys. Rev. 108(3), 546–550 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bedrossian J., Masmoudi N., Mouhot C.: Landau damping: paraproducts and Gevrey regularity. Ann. PDE. 2(1), 2:4 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cheng Y., Gamba I.M., Morrison P.J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems. J. Sci. Comput. 56, 319–349 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cheng C.Z., Knorr G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22(3), 330–351 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    Demeio L., Zweifel P.F.: Numerical simulations of perturbed Vlasov equilibria. Phys. Fluids B. 2, 1252–1255 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    Demeio L., Holloway J.P.: Numerical simulations of BGK modes. J. Plasma Phys. 46, 63–84 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Danielson J.R., Anderegg F., Driscoll C.F.: Measurement of Landau damping and the evolution to a BGK equilibrium. Phys. Rev. Lett. 92, 245003-1-4 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Ghizzo A., Izrar B., Bertrand P., Fijalkow E., Feix M.R., Shoucri M.: Stability of Bernstein-Greene-Kruskal plasma equilibria. Numerical experiments over a long time. Phys. Fluids. 31(1), 72–82 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Guo Y., Strauss W.: Instability of periodic BGK equilibria. Comm. Pure Appl. Math. XLVIII, 861–894 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guo, Y., Lin, Z.: Linear Landau damping near stable BGK waves. Work in preparationGoogle Scholar
  16. 16.
    Hislop P.D., Sigal I.M.: Introduction to Spectral Theory. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kato, T.: Perturbation theory for linear operators. In: Grundlehren der Mathematischen Wissenschaften, Band 132, 2nd edn. Springer, Berlin (1976)Google Scholar
  18. 18.
    Lin Z.: Instability of periodic BGK waves. Math. Res. Lett. 8, 521–534 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lin Z.: Nonlinear instability of periodic waves for Vlasov-Poisson system. Commun. Pure Appl. Math. 58, 505–528 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lin Z., Zeng C.: Small BGK waves and nonlinear Landau damping. Commun. Math. Phys. 306, 291–331 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Luque A., Schamel H.: Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems. Phys. Rep. 415, 261–359 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Medvedev M.V., Diamond P.H., Rosenbluth M.N., Shevchenko V.I.: Asymptotic theory of nonlinear landau damping and particle trapping in waves of finite amplitude. Phys. Rev. Lett. 81, 5824 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Mouhot C., Villani C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Manfredi G.: Long-time behavior of nonlinear Landau damping. Phys. Rev. Lett. 79, 2815–2818 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Penrose O.: Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids. 3, 258–265 (1960)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Schamel H.: Cnoidal electron hole propagation: trapping, the forgotten nonlinearity in plasma and fluid dynamics. Phys. Plasmas. 19, 020501 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Trivelpiece A.W., Krall N.A.: Principles of Plasma Physics. McGraw-Hill, New York (1973)Google Scholar
  28. 28.
    Valentini F., Carbone V., Veltri P., Mangeney A.: Wave-particle interaction and nonlinear Landau damping in collisionless electron plasmas. Transp. Theory Stat. Phys. 34, 89–101 (2005)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations