Advertisement

Communications in Mathematical Physics

, Volume 352, Issue 3, pp 905–933 | Cite as

Dyson’s Spike for Random Schroedinger Operators and Novikov–Shubin Invariants of Groups

  • Marcin KotowskiEmail author
  • Bálint Virág
Article

Abstract

We study one dimensional Schroedinger operators with random edge weights and their expected spectral measures \({\mu_H}\) near zero. We prove that the measure exhibits a spike of the form \({\mu_H(-\varepsilon,\varepsilon) \sim \frac{C}{\mid{{\rm log}\varepsilon}\mid^2}}\) (first observed by Dyson), without assuming independence or any regularity of edge weights. We also identify the limiting local eigenvalue distribution, which is different from Poisson and the usual random matrix statistics. We then use the result to compute Novikov–Shubin invariants for various groups, including lamplighter groups and lattices in the Lie group Sol.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bil95.
    Billingsley P.: Probability and Measure, 3rd edn. Wiley, Hoboken (1995)zbMATHGoogle Scholar
  2. BS10.
    Bai Z., Silverstein J.W.: Spectral Analysis of Large Dimensional Random Matrices, 2nd edn. Springer Series in Statistics. Springer, New York (2010)CrossRefGoogle Scholar
  3. BSV13.
    Bordenave, C., Sen, A., Virag, B.: Mean quantum percolation, arXiv:1308.3755 (2013)
  4. CP89.
    Campanino M., Perez J.F.: Singularity of the density of states for one-dimensional chains with random couplings. Commun. Math. Phys. 124(4), 543–552 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. Dur10.
    Durrett R.: Probability: Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. Dys53.
    Dyson F.J.: The dynamics of a disordered linear chain. Phys. Rev. 92, 1331–1338 (1953)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. Eck00.
    Eckmann, B.: Introduction to l2-methods in topology: reduced l2-homology, harmonic chains, l2-betti numbers. Isr. J. Math. 117(1), 183–219 (2000) (English)Google Scholar
  8. ER78.
    Eggarter T.P., Riedinger R.: Singular behavior of tight-binding chains with off-diagonal disorder. Phys. Rev. B 18, 569–575 (1978)ADSCrossRefGoogle Scholar
  9. Gra14.
    Grabowski, Ł.: On turing dynamical systems and the atiyah problem. Invent. Math. 198(1), 27–69 (2014) (English)Google Scholar
  10. GV.
    Grabowski, Ł., Virag, B.: Spectra of lamplighter graphs via random schrodinger operators. http://people.maths.ox.ac.uk/grabowski/lamplighters_via_schroedinger.pdf
  11. Kal02.
    Kallenberg O.: Foundations of Modern Probability, Probability and Its Applications. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  12. KN03.
    Klopp F., Nakamura S.: A note on anderson localization for the random hopping model. J. Math. Phys. 44(11), 4975–4980 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. LB99.
    Le Borgne, S.: Limit theorems for non-hyperbolic automorphisms of the torus. Isr. J. Math. 109(1), 61–73 (English)Google Scholar
  14. LL95.
    Lott, J., Lück, W.: L2-topological invariants of 3-manifolds. Invent. Math. 120(1), 15–60 (1995) (English)Google Scholar
  15. Luc02.
    Lück, W.: L2-invariants: theory and applications to geometry and k-theory. In: A Series of Modern Surveys in Mathematics Series. Springer (2002)Google Scholar
  16. Mo76.
    Móricz, F.: Moment inequalities and the strong laws of large numbers. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 35(4), 299–314 (1976) (English)Google Scholar
  17. MP10.
    Mörters, P., Peres, Y.: Brownian motion. In: Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2010)Google Scholar
  18. MS12.
    Molnór, E., Szirmai, J.: Classification of Sol lattices. Geom. Dedic. 161(1), 251–275 (2012) (English)Google Scholar
  19. Rue76.
    Ruelle, D.: A measure associated with axiom-a attractors. Am. J. Math. 98, 619–654 (1976) (English)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.University of TorontoTorontoCanada

Personalised recommendations