Skip to main content
Log in

An Improved Semidefinite Programming Hierarchy for Testing Entanglement

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a stronger version of the Doherty–Parrilo–Spedalieri (DPS) hierarchy of approximations for the set of separable states. Unlike DPS, our hierarchy converges exactly at a finite number of rounds for any fixed input dimension. This yields an algorithm for separability testing that is singly exponential in dimension and polylogarithmic in accuracy. Our analysis makes use of tools from algebraic geometry, but our algorithm is elementary and differs from DPS only by one simple additional collection of constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grötschel, M., Lovász, L. Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, second corrected edition edn., Springer (1993)

  2. Liu, Y.K.: The complexity of the consistency and N-representability problems for quantum states. Ph.D. thesis, University of California, San Diego (2007) arXiv:0712.3041

  3. Harrow, A.W., Montanaro, A.: Testing product states, quantum Merlin–Arthur games and tensor optimization. J. ACM 60(1), 3:1 (2013). arXiv:1001.0017

  4. Beigi, S., Shor, P.W.: Approximating the set of separable states using the positive partial transpose test. J. Math. Phys. 51(4), 042202 (2010) arXiv:0902.1806

  5. Gall, F.L., Nakagawa, S., Nishimura, H.: On QMA protocols with two short quantum proofs. Q. Inf. Comp. 12, 589 (2012) arXiv:1108.4306

  6. Cubitt, T.S., Perez-Garcia, D., Wolf, M.: Undecidability of the spectral gap problem (2014). (In preparation)

  7. Ito, T., Kobayashi, H., Watrous, J.: Quantum Interactive Proofs with Weak Error Bounds. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (2012), ITCS ’12, pp. 266–275. arXiv:1012.4427

  8. Basu S., Pollack R., Roy M.F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43, 1002 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: A complete family of separability criteria (2003) arXiv:quant-ph/0308032

  10. Barak, B., Steurer D.: Sum-of-squares proofs and the quest toward optimal algorithms (2014) arXiv:1404.5236

  11. Nie J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137, 225 (2013) arXiv:1006.2418

    Article  MathSciNet  MATH  Google Scholar 

  12. Gharibian S.: Strong NP-hardness of the quantum separability problem. QIC 10, 343 (2010) arXiv:0810.4507

    MathSciNet  MATH  Google Scholar 

  13. Aaronson, S., Impagliazzo, R., Moshkovitz, D.: AM with multiple merlins. In: Computational Complexity (CCC), 2014 IEEE 29th Conference on (2014), pp. 44–55. arXiv:1401.6848

  14. Barak, B., Brandão, F.G.S.L., Harrow, A.W., Kelner, J., Steurer, D., Zhou, Y.: Hypercontractivity, sum-of-squares proofs, and their applications. In: Proceedings of the 44th symposium on Theory of Computing (2012), STOC ’12, pp. 307–326 arXiv:1205.4484

  15. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?. In: Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on (IEEE, 1998), pp. 653–662

  16. Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement (2003) arXiv:quant-ph/0303055

  17. Blier, H., Tapp, A.: All languages in NP have very short quantum proofs. In: First International Conference on Quantum, Nano, and Micro Technologies. IEEE Computer Society, Los Alamitos, CA, USA, (2009), pp. 34–37 arXiv:0709.0738

  18. Chiesa, A., Forbes, M.A.: Improved soundness for QMA with multiple provers. Chic. J. Theor. Comput. Sci. 2013(1) (2013) arXiv:1108.2098

  19. Navascués M., Owari M., Plenio M.B.: Power of symmetric extensions for entanglement detection. Phys. Rev. A 80, 052306 (2009) arXiv:0906.2731

    Article  ADS  MATH  Google Scholar 

  20. Aaronson, S., Beigi, S., Drucker, A., Fefferman, B., Shor, P.: The power of unentanglement. Annual IEEE Conference on Computational Complexity 0, 223 (2008) arXiv:0804.0802

  21. Chen, J., Drucker, A.: Short multi-prover quantum proofs for SAT without entangled measurements (2010) arXiv:1011.0716

  22. Brandão, F.G.S.L., Christandl, M., Yard, J.: Faithful squashed entanglement. Comm. Math. Phys. 306, 805 (2011) arXiv:1010.1750

  23. Li, K., Winter, A.: Relative entropy and squashed entanglement. Comm. Math. Phys. 326, 63 (2014) arXiv:1210.3181

  24. Brandão, F.G.S.L., Harrow, A.W.: Quantum de Finetti theorems under local measurements with applications. In: Proceedings of the 45th annual ACM Symposium on theory of computing. (2013), STOC ’13, pp. 861–870 arXiv:1210.6367

  25. Shi, Y., Wu, X.: Epsilon-net method for optimizations over separable states. In: ICALP12. Springer, (2012), pp. 798–809 arXiv:1112.0808

  26. Brandão, F.G., Harrow, A.W.: Estimating injective tensor norms using nets (2014). (In preparation)

  27. Li, K., Smith, G.: Quantum de Finetti theorem measured with fully one-way LOCC norm (2014) arXiv:1408.6829

  28. Putinar M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. In: Proceedings of the 2011 IEEE 26th Annual Conference on Computational Complexity. (2011), CCC ’11, pp. 157–166. arXiv:1012.5043

  30. Klerk, E., Laurent, M., Parrilo, P.: On the equivalence of algebraic approaches to the minimization of forms on the simplex. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control, Lecture Notes in Control and Information Science, vol. 312, Springer Berlin Heidelberg, (2005), pp. 121–132.

  31. Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. In: In Proceedings of the CACSD Conference Taipei, Taiwan, (2004)

  32. Löfberg J.: Pre- and post-processing sum-of-squares programs in practice. IEEE Trans. Autom. Control 54, 1007 (2009)

    Article  MathSciNet  Google Scholar 

  33. MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28). (2015)

  34. Permenter, F., Parrilo, P.: Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone (2014) arXiv:1408.4685

  35. Laurent, M.: Sums of squares, Moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds) Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and its Applications, vol. 149, Springer New York, (2009), pp. 157–270

  36. Nie J., Ranestad K.: Algebraic degree of polynomial optimization. SIAM J. Optim. 20, 485 (2009). doi:10.1137/080716670

    Article  MathSciNet  MATH  Google Scholar 

  37. Trnovská M.: Strong duality conditions in semidefinite programming. J. Electr. Eng. 56, 1 (2005)

    MATH  Google Scholar 

  38. Cédric Josz, C.(INRIA), Henrion, Didier: (LAAS. Strong duality in Lasserre’s hierarchy for polynomial optimization. Optim. lett. 10, 3 (2016) arXiv:1405.7334

  39. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Mathematical Programming pp. 301 (1997)

  40. Strelchuk S., Oppenheim J.: Hybrid zero-capacity channels. Phys. Rev. A 86, 022328 (2012) arXiv:1207.1084

    Article  ADS  Google Scholar 

  41. Pereszlényi, A.: Multi-prover quantum Merlin–Arthur proof systems with small gap. (2012) arXiv:1205.2761

  42. Cox, D., little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, second edition edn. Undergarduate texts in mathematics. Springer, (1996)

  43. Harris, J.: Algebraic geometry: a first course. Graduate texts in mathematics. Springer, (1992)

  44. Buchberger B.: Ein algorithmisches Kriterum für die Lösbarkeit eines algebraisches Gleichungssystems. Aequationes Mathematicae 4, 374 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mayr, E.W., Ritscher, S.: Degree bounds for GröBner bases of low-dimensional polynomial ideals. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA, (2010), ISSAC ’10, pp. 21–27.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aram W. Harrow.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrow, A.W., Natarajan, A. & Wu, X. An Improved Semidefinite Programming Hierarchy for Testing Entanglement. Commun. Math. Phys. 352, 881–904 (2017). https://doi.org/10.1007/s00220-017-2859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2859-0

Navigation