Skip to main content
Log in

The Geometric Nature of the Flaschka Transformation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Flaschka map, originally introduced to analyze the dynamics of the integrable Toda lattice system, is the inverse of a momentum map. We discuss the geometrical setting of the map and apply it to the generalized Toda lattice systems on semisimple Lie algebras, the rigid body system on Toda orbits, and to coadjoint orbits of semidirect products groups. In addition, we develop an infinite-dimensional generalization for the group of area preserving diffeomorphisms of the annulus and apply it to the analysis of the dispersionless Toda lattice PDE and the solvable rigid body PDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn, revised and enlarged. With the assistance of Tudor Ratiu and Richard Cushman. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, MA (1978). Reprinted by Perseus Press, 1997

  2. Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifolds, Tensor Analysis, and Applications. Volume 75 of Applied Mathematical Sciences. Springer, Berlin (1988)

  3. Arhangel’skiĭ A.A.: Completely integrable Hamiltonian systems on a group of triangular matrices. Math. USSR Sbornik 36(1), 127–134 (1980)

    Article  Google Scholar 

  4. Arnal D., Currey B., Dali B.: Construction of canonical coordinates for exponential Lie groups. Trans. Am. Math. Soc. 361(12), 6283–6348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernat, P., Conze, N., Duflo, M., Lévy-Nahas, M., Raïs, M., Renouard, P., Vergne, M.: Représentations des Groupes de Lie Résolubles, Monographies de la Société Mathématique de France, vol. 4. Dunod, Paris (1972)

  6. Bloch A.M.: Steepest descent, linear programming and Hamiltonian flows. Contemp. Math. AMS 114, 77–88 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloch A.M., Brockett R.W., Ratiu T.S.: A new formulation of the generalized Toda Lattice equations and their fixed point analysis via the momentum map. Bull. Am. Math. Soc. 23, 477–485 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bloch A.M., Brockett R.W., Ratiu T.S.: Completely integrable gradient flows. Comm. Math. Phys. 147, 57–74 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bloch, A.M., El Hadrami, M., Flaschka, H., Ratiu, T.S.: Maximal tori of some symplectomorphism groups and applications to convexity. In: Sternheimer, D., Rawnsley, J., Gutt, S. (eds.) Deformation Theory and Symplectic Geometry. Proceedings of the Ascona Meeting, June, 1996, pp. 210–222. Kluwer, Dordrecht (1997)

  10. Bloch A.M., Flaschka H., Ratiu T.S.: A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra. Duke Math. J. 61, 41–65 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bloch A.M., Flaschka H., Ratiu T.S.: A Schur–Horn–Kostant convexity theorem for the diffeomorphism group of the annulus. Invent. Math. 113, 511–529 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bloch A.M., Flaschka H., Ratiu T.S.: The Toda PDE and the geometry of the diffeomorphism group of the annulus. Fields Inst. Commun. 7, 57–92 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Bloch, A.M., Gay-Balmaz, F., Ratiu, T.S.: Coadjoint orbits in duals of Lie algebras with admissible ideals. Math. Sbornik (to appear) (2017)

  14. Bloch A.M., Golse F., Paul T., Uribe A.: Dispersionless Toda and Toeplitz operators. Duke Math. J. 117, 157–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bogayavlensky O.I.: On perturbations of the periodic Toda lattice. Comm. Math. Phys. 51(3), 201–209 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  16. Brockett, R.W., Bloch, A.M.: Sorting with the dispersionless limit of the Toda lattice. In: Harnad, J., Marsden, J.E. (eds.) Proceedings of the CRM Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, pp. 103–112. CRM, Montréal (1990)

  17. Cahn, R.N.: Semi-Simple Lie Algebras and Their Representations. The Bnejamin/Cummins Publishing Company, Reading (1984)

  18. Deift P., Li L.C., Nanda T., Tomei C.: The Toda flow on a generic orbit is integrable. Comm. Pure Appl. Math. 39(2), 183–232 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deift, P., McLaughlin, K.T.-R.: A Continuum Limit of the Toda lattice. Mem. Am. Math. Soc. 624 (1992)

  20. Duval C., Elhadad J., Tuynman G.M.: Pukanszky’s condition and symplectic induction. J. Differ. Geom. 36, 331–348 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flaschka H.: The Toda lattice. I. Existence of integrals. Phys. Rev. B (3) 9, 1924–1925 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Flaschka H.: On the Toda lattice. II. Inverse-scattering solution. Progr. Theor. Phys. 51, 703–716 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Goodman R., Wallach N.R.: Classical and quantum-mechanical systems of Toda lattice type. I. Comm. Math. Phys. 83, 355–386 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, (1984)

  25. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, third printing, revised, Graduate Texts in Mathematics, vol. 9. Springer, New York (1980)

  26. Kirillov, A.: Elément de la Théorie des Représentations. Edition MIR, Moscow (1974)

  27. Kostant, B.: On certain unitary representations which arise from a quantization theory. In: Group Representations in Mathematics and Physics, Seattle 1969, Springer Lecture Notes in Physics, vol. 6, pp. 237–253 (1970)

  28. Kostant B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34, 195–338 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Knapp, A.W.: Lie Groups Beyond an Introduction, 2nd edn. Progress in Mathematics, vol. 140. Birkhäuser, Boston (2002)

  30. Kummer M.: On the construction of the reduced phase space of a Hamiltonian system with symmetry. Indiana Univ. Math. J. 30, 281–291 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lempert, L.: The problem of complexifying a Lie group. In: Multidimensional Complex Analysis and Partial Differential Equations (São Carlos, 1995), Contemporary Mathematics, vol. 205, pp. 169–176. American Mathematical Society, Providence (1997)

  32. Manakov, S.V.: Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. JETP 40(2), 269–274 (1975); translated from Z̆. Èksper. Teoret. Fiz., 67(2), 543–555 (1974)

  33. Marsden, J.E., Misiołek, G., Ortega, J.-P., Perlmutter, M., Ratiu, T.S.: Hamiltonian Reduction by Stages. Springer Lecture Notes in Mathematics, vol. 1913. Springer, Berlin (2007)

  34. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, 2nd edn, 1999. Springer, Berlin (1994)

  35. Marsden J.E., Ratiu T.S., Weinstein A.: Semidirect products and reduction in mechanics. Trans. Am. Math. Soc. 281, 147–177 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marsden J.E., Ratiu T.S., Weinstein A.: Reduction and Hamiltonian structures on duals of semidirect product Lie Algebras. Contemp. Math. Am. Math. Soc. 28, 55–100 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Marsden, J.E., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)

  38. Michor P.W.: Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence (2008)

  39. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential—an integrable system. In: Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 467–497, Lecture Notes in Physics vol. 38. Springer, Berlin (1975)

  40. Mishchenko A.S., Fomenko A.T.: On the integration of the Euler equations on semisimple Lie algebras. Sov. Math. Dokl. 17, 1591–1593 (1976)

    MATH  Google Scholar 

  41. Mishchenko, A.S., Fomenko, A.T.: Integrability of Euler equations on semisimple Lie algebras. Sel. Math. Sov. 2(3), 2017–291 (1982)

  42. Neretin, Yu.A.: Categories of Symmetries and Infinite-dimensional Groups. Oxford University Press, (1996)

  43. Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, vol. 222. Birkhäuser, Boston (2004)

  44. Pedersen N.V.: On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications I. Math. Ann. 281, 633–669 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pressley, A., Segal, G.: Loop Groups, Oxford Mathematical Monographs. Clarendon Press, Oxford (1986)

  46. Pukanszky, L.: On a property of the quantization map for the coadjoint orbits of connected Lie groups. In: The Orbit Method in Representation Theory (Copenhagen, 1988), Progress in Mathematics, pp. 187–211, vol. 82. Birkhäuser, Boston (1990)

  47. Pukanszky L.: On the coadjoint orbits of connected Lie groups. Acta Sci. Math. 56, 347–358 (1992)

    MathSciNet  MATH  Google Scholar 

  48. Ratiu, T.S.: Involution theorems. In: Geometric Methods in Mathematical Physics (Proceedings of the NSF-CBMS Conference, Univ. Lowell, Lowell, Mass., 1979), Lecture Notes in Mathematics, vol. 775, pp. 219–257. Springer, Berlin (1980)

  49. Ratiu T.S.: Euler–Poisson equations on Lie algebras and the N-dimensional heavy rigid body. Proc. Natl. Acad. Sci. USA 78, 1327–1328 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ratiu, T.S.: Euler–Poisson equations on Lie algebras and the N-dimensional heavy rigid body. Am. J. Math. 104, 409–448 (1982); 1337

  51. Reyman, S.G., Semenov-Tian-Shansky, M.A.: Group-theoretical methods in the theory of finite-dimensional integrable systems. In: Arnold, V.I., Novikov, S.P. (eds.) Encyclopaedia of Mathematical Sciences, Dynamical Systems VII, Part II, Integrable systems II, Chapter 2, pp. 88–116, Springer, New York (1994)

  52. Samelson, H.: Notes on Lie Algebras, 3rd Corrected Edition, Van Nostrand Reinhold Mathematical Studies, vol. 23. Kingston Ontario, Queen’s University (1989)

  53. Satzer W.J. Jr: Canonical reduction of mechanical systems invariant under abelian group actions with an application to celestial mechanics. Indiana Univ. Math. J. 26, 951–976 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  54. Saveliev M.V., Vershik A.M.: Continuum analogues of contragredient Lie algebra. Comm. Math. Phys. 126, 367–378 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  55. Symes W.W.: Hamiltonian group actions and integrable systems. Phys. D 1, 339–374 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  56. Takasaki K., Takebe T.: SDiff(2) Toda equation—hierarchy, tau function, and symmetries. Lett. Math. Phys. 23, 205–214 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Toda M.: Waves in nonlinear lattice. Suppl. Prog. Theor. Phys. 45, 174–178 (1970)

    Article  ADS  Google Scholar 

  58. Trofimov V.V.: Euler equations on Borel subalgebras of semisimple Lie algebras. Math. USSR Izvestija 14(3), 653–670 (1980)

    Article  ADS  MATH  Google Scholar 

  59. Trofimov, V.V., Fomenko, A.T.: Geometry of Poisson brackets and methods for integration in the sense of Liouville of systems on symmetric spaces. J. Sov. Math. 39(3), 2683–2746 (1987). Original Russian in Current Problems in Mathematics. Newest results, vol. 29, 3–108, 215, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986

  60. Vergne, M.: Polarisations. In: Bernat, P., Conze, N., Duflo, M., Lévy-Nahas, M., Raïs, M., Renouard, P., Vergne, M. (eds.) Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France 4, pp. 47–92. Dunod, Paris (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Bloch.

Additional information

Communicated by P. Deift

Anthony M. Bloch: Research partially supported by NSF Grants INSPIRE-1363720 and DMS-1207693, DMS-1613819 and the Simons Foundation.

François Gay-Balmaz: Research partially supported by the ANR project GEOMFLUID (ANR-14-CE23-0002-01).

Tudor S. Ratiu: Research partially supported by NCCR SwissMAP grant of the Swiss National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, A.M., Gay-Balmaz, F. & Ratiu, T.S. The Geometric Nature of the Flaschka Transformation. Commun. Math. Phys. 352, 457–517 (2017). https://doi.org/10.1007/s00220-017-2854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2854-5

Navigation