Skip to main content
Log in

The Vlasov–Maxwell–Boltzmann System Near Maxwellians in the Whole Space with Very Soft Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Since the work by Guo (Invent Math 153(3):593–630, 2003), it has remained an open problem to establish the global existence of perturbative classical solutions around a global Maxwellian to the Vlasov–Maxwell–Boltzmann system with the whole range of soft potentials. This is mainly due to the complex structure of the system, in particular, the degenerate dissipation at large velocity, the velocity-growth of the nonlinear term induced by the Lorentz force, and the regularity-loss of the electromagnetic fields. This paper solves this problem in the whole space provided that initial perturbation has sufficient regularity and velocity-integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.: Sobolev Spaces. Academic Press, New York (1985)

    Google Scholar 

  2. Alexandre R., Morimoto Y., Ukai S., Yang C.-J., Yang T.: The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. J. Funct. Anal. 263(3), 915–1010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. An account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3rd edn, prepared in co-operation with D. Burnett. Cambridge University Press, London (1970)

  4. Duan R.-J.: Global smooth dynamics of a fully ionized plasma with long-range collisions. Ann. Inst. Henri Poincar Anal. Non Linaire 31(4), 751–778 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Duan R.-J., Liu S.-Q.: The Vlasov–Poisson–Boltzmann system without angular cutoff. Commun. Math. Phys. 324(1), 1–45 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Duan R.-J., Liu S.-Q., Yang T., Zhao H.-J.: Stabilty of the nonrelativistic Vlasov–Maxwell–Boltzmann system for angular non-cutoff potentials. Kinet. Relat. Models 6(1), 159–204 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Duan R.-J., Strain R.M.: Optimal large-time behavior of the Vlasov–Maxwell–Boltzmann system in the whole space. Commun. Pure Appl. Math. 24(11), 1497–1546 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Duan R.-J., Yang T., Zhao H.-J.: The Vlasov–Poisson–Boltzmann system for soft potentials. Math. Methods Models Appl. Sci. 23(6), 979–1028 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grad H.: Asymptotic theory of the Boltzmann equation II. In: Laurmann, J.A. (ed.) Rarefied Gas Dynamics, pp. 26–59. Academic Press, New York (1963)

    Google Scholar 

  10. Gressman P.T., Strain R.M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Am. Math. Soc. 24(3), 771–847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization for non-symmetric operators and exponential H-theorem. arXiv:1006.5523

  12. Guo Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Guo Y.: Classical solutions to the Boltzmann equation formolecules with an angular cutoff. Arch. Ration. Mech. Anal. 169, 305–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo Y.: The Vlasov–Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Guo Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53, 1081–1094 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo Y.: The Vlasov–Poisson–Laudau system in a periodic box. J. Am. Math. Soc. 25, 759–812 (2012)

    Article  MATH  Google Scholar 

  17. Guo Y., Strain R.: Momentum regularity and stability of the relativistic Vlasov–Maxwell–Boltzmann system. Commun. Math. Phys. 310(3), 649–673 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Guo Y., Wang Y.J.: Decay of dissipative equation and negative sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hosono T., Kawashima S.: Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system. Math. Models Methods Appl. Sci. 16(11), 1839–1859 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jang J.: Vlasov–Maxwell–Boltzmann diffusive limit. Arch. Ration. Mech. Anal. 194(2), 531–584 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krall N.A., Trivelpiece A.W.: Principles of Plasma Physics. McGraw-Hill, New York (1973)

    Google Scholar 

  22. Lei Y.-J., Zhao H.-J.: Negative Sobolev spaces and the two-species Vlasov–Maxwell–Landau system in the whole space. J. Funct. Anal. 267(10), 3710–3757 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu T.-P., Yang T., Yu S.-H.: Energy method for the Boltzmann equation. Phys. D 188, 178–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu T.-P., Yu S.-H.: Boltzmann equation: micro–macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246, 133–179 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Strain R.M.: The Vlasov–Maxwell–Boltzmann system in the whole space. Commun. Math. Phys. 268(2), 543–567 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Strain R.M., Guo Y.: Stability of the relativistic Maxwellian in a collisional plasma. Commun. Math. Phys. 251(2), 263–320 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Strain R.M., Guo Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187(2), 287–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Strain R.M., Zhu K.-Y.: The Vlasov–Poisson–Landau system in \({{\mathbb{R}}^{3}_{x}}\). Arch. Ration. Mech. Anal. 210(2), 615–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. I. North-Holland, Amsterdam, pp. 71–305 (2002)

  30. Wang Y.-J.: Golobal solution and time decay of the Vlasov–Poisson–Landau system in \({{\mathbb{R}}^{3}_{x}}\). SIAM J. Math. Anal. 44(5), 3281–3323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xiao Q.-H., Xiong L.-J., Zhao H.-J.: The Vlasov–Posson–Boltzmann system with angular cutoff for soft potential. J. Differ. Equ. 255(6), 1196–1232 (2013)

    Article  ADS  MATH  Google Scholar 

  32. Xiao, Q.-H., Xiong, L.-J., Zhao, H.-J.: The Vlasov–Posson–Boltzmann system for the whole range of cutoff soft potentials. J. Funct. Anal. 272, 166–226 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Duan.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R., Lei, Y., Yang, T. et al. The Vlasov–Maxwell–Boltzmann System Near Maxwellians in the Whole Space with Very Soft Potentials. Commun. Math. Phys. 351, 95–153 (2017). https://doi.org/10.1007/s00220-017-2844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2844-7

Navigation