Skip to main content
Log in

Global Well-Posedness of the Euler–Korteweg System for Small Irrotational Data

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Euler–Korteweg equations are a modification of the Euler equations that take into account capillary effects. In the general case they form a quasi-linear system that can be recast as a degenerate Schrödinger type equation. Local well-posedness (in subcritical Sobolev spaces) was obtained by Benzoni–Danchin–Descombes in any space dimension, however, except in some special case (semi-linear with particular pressure) no global well-posedness is known. We prove here that under a natural stability condition on the pressure, global well-posedness holds in dimension \({d \geq 3}\) for small irrotational initial data. The proof is based on a modified energy estimate, standard dispersive properties if \({d \geq 5}\), and a careful study of the structure of quadratic nonlinearities in dimension 3 and 4, involving the method of space time resonances.

Résumé

Les équations d’Euler–Korteweg sont une modification des équations d’Euler prenant en compte l’effet de la capillarité. Dans le cas général elles forment un système quasi-linéaire qui peut se reformuler comme une équation de Schrödinger dégénérée. L’existence locale de solutions fortes a été obtenue par Benzoni–Danchin–Descombes en toute dimension, mais sauf cas très particuliers il n’existe pas de résultat d’existence globale. En dimension au moins 3, et sous une condition naturelle de stabilité sur la pression on prouve que pour toute donnée initiale irrotationnelle petite, la solution est globale. La preuve s’appuie sur une estimation d’énergie modifiée. En dimension au moins 5 les propriétés standard de dispersion suffisent pour conclure tandis que les dimensions 3 et 4 requièrent une étude précise de la structure des nonlinéarités quadratiques pour utiliser la méthode des résonances temps espaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli P., Marcati P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287(2), 657–686 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Antonelli P., Marcati P.: The quantum hydrodynamics system in two space dimensions. Arch. Ration. Mech. Anal. 203(2), 499–527 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audiard C.: Dispersive smoothing for the Euler–Korteweg model. SIAM J. Math. Anal. 44(4), 3018–3040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audiard, C., Haspot, B.: From Gross–Pitaevskii equation to Euler–Korteweg system, existence of global strong solutions with small irrotational initial data. Preprint. https://hal.archives-ouvertes.fr/hal-01077281

  5. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2011)

  6. Benzoni-Gavage S., Danchin R., Descombes S.: On the well-posedness for the euler-korteweg model in several space dimensions. Indiana Univ. Math. J. 56, 1499–1579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benzoni-Gavage S., Danchin R., Descombes S., Jamet D.: Structure of Korteweg models and stability of diffuse interfaces. Interfaces Free Bound. 7(4), 371–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benzoni-Gavage Sylvie: Planar traveling waves in capillary fluids. Differ. Integral Equ. 26(3–4), 439–485 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Bulíček M., Feireisl E., Málek J., Shvydkoy R.: On the motion of incompressible inhomogeneous Euler–Korteweg fluids. Discrete Contin. Dyn. Syst. Ser. S 3(3), 497–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carles R., Danchin R., Saut J.-C.: Madelung, Gross–Pitaevskii and Korteweg. Nonlinearity 25(10), 2843–2873 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cohn S.: Global existence for the nonresonant Schrödinger equation in two space dimensions. Can. Appl. Math. Q. 2(3), 257–282 (1994)

    MATH  Google Scholar 

  12. De Lellis C., Székelyhidi L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donatelli D., Feireisl E., Marcati P.: Well/ill posedness for the Euler–Korteweg–Poisson system and related problems. Commun. Partial Differ. Equ. 40(7), 1314–1335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Germain P., Masmoudi N., Shatah J.: Global solutions for 2D quadratic Schrödinger equations. J. Math. Pures Appl. (9) 97(5), 505–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Germain P., Masmoudi N., Shatah J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. (2) 175(2), 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Not. 2009(3), 414–432 (2009). doi:10.1093/imrn/rnn135

  17. Germain P., Masmoudi N., Shatah J.: Global existence for capillary water waves. Commun. Pure Appl. Math. 68(4), 625–687 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giesselman J., Lattanzio C., Tzavaras A.: Relative energy for the Korteweg theory and related hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal. 223, 1427 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo Y., Pausader B.: Global smooth ion dynamics in the Euler–Poisson system. Commun. Math. Phys. 303(1), 89–125 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gustafson S., Nakanishi K., Tsai T.-P.: Scattering for the Gross–Pitaevskii equation. Math. Res. Lett. 13(2–3), 273–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gustafson S., Nakanishi K., Tsai T.-P.: Global dispersive solutions for the Gross–Pitaevskii equation in two and three dimensions. Ann. Henri Poincaré 8(7), 1303–1331 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Gustafson S., Nakanishi K., Tsai T.-P.: Scattering theory for the Gross–Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11(4), 657–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hayashi, N., Naumkin, P.I.: On the quadratic nonlinear Schrödinger equation in three space dimensions. Int. Math. Res. Not. 2000(3), 115–132 (2000). doi:10.1155/S1073792800000088

  24. Klainerman S., Ponce G.: Global, small amplitude solutions to nonlinear evolution equations. Commun. Pure Appl. Math. 36(1), 133–141 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shatah J.: Global existence of small solutions to nonlinear evolution equations. J. Differ. Equ. 46(3), 409–425 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Shatah J.: Normal forms and quadratic nonlinear Klein–Gordon equations. Commun. Pure Appl. Math. 38(5), 685–696 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strauss W.: Nonlinear scattering theory at low energy. J. Funct. Anal. 41, 110–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Taylor, M.E.: Partial Differential Equations III. Nonlinear Equations, Volume 117 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Audiard.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Audiard, C., Haspot, B. Global Well-Posedness of the Euler–Korteweg System for Small Irrotational Data. Commun. Math. Phys. 351, 201–247 (2017). https://doi.org/10.1007/s00220-017-2843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2843-8

Navigation