Communications in Mathematical Physics

, Volume 352, Issue 3, pp 935–966 | Cite as

Strengthened Reeh–Schlieder Property and Scattering in Quantum Field Theories Without Mass Gaps

  • Maximilian DuellEmail author


We develop Haag–Ruelle scattering theory for Wigner particles in local relativistic Quantum Field Theory without assuming mass gaps or any other restrictions on the spectrum of the mass operator near the particle masses. Our approach is based on the Reeh–Schlieder property of the vacuum state. It is shown that a strengthened variant of this property, concerning the relative approximation error for single-particle states, implies the existence of scattering states.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.
    Araki H.: Mathematical Theory of Quantum Fields. International Series of Monographs on Physics 101. Oxford Science Publications. Oxford University Press, Oxford (1999)Google Scholar
  2. AD15.
    Alazzawi S., Dybalski W.: Compton scattering in the Buchholz–Roberts framework of relativistic QED. Lett. Math. Phys. 107(1), 81–106 (2017). doi: 10.1007/s11005-016-0889-8 ADSMathSciNetCrossRefGoogle Scholar
  3. AHR62.
    Araki, H., Hepp, K., Ruelle, D.: On the asymptotic behaviour of Wightman functions in space-like directions. Helv. Phys. Acta 35, 164–174 (1962). doi: 10.5169/seals-113273
  4. Arv80.
    Arveson, W.: The harmonic analysis of automorphism groups. In: Operator Algebras and Applications, Part I (Kingston, Ont., 1980), in Proceedings of Symposia in Pure Mathematics, vol. 38, pp. 199–269. AMS (1982). doi: 10.1090/pspum/038.1
  5. BBS01.
    Borchers H.J., Buchholz D., Schroer B.: Polarization-free generators and the S-matrix. Commun. Math. Phys. 219, 125–140 (2001). doi: 10.1007/s002200100411 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. BR14.
    Buchholz D., Roberts J.E.: New light on infrared problems: sectors, statistics, symmetries and spectrum. Commun. Math. Phys. 330, 935–972 (2014). doi: 10.1007/s00220-014-2004-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. Bu77.
    Buchholz D.: Collision theory for massless bosons. Commun. Math. Phys. 52, 147–173 (1977). doi: 10.1007/BF01625781 ADSMathSciNetCrossRefGoogle Scholar
  8. Bu86.
    Buchholz D.: Gauss’ law and the infraparticle problem. Phys. Lett. B. 174, 331–334 (1986). doi: 10.1016/0370-2693(86)91110-X ADSMathSciNetCrossRefGoogle Scholar
  9. Bu90a.
    Buchholz D.: Harmonic analysis of local operators. Commun. Math. Phys. 129, 631–641 (1990). doi: 10.1007/BF02097109 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. Bu90b.
    Buchholz D.: On quantum fields that generate local algebras. J. Math. Phys. 31, 1839–1846 (1990). doi: 10.1063/1.528680 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. CFP10.
    Chen T., Fröhlich J., Pizzo A.: Infraparticle scattering states in non-relativistic QED: I. the Bloch-Nordsieck paradigm. Commun. Math. Phys. 294, 761–825 (2010). doi: 10.1007/s00220-009-0950-x ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. CT15.
    Cadamuro D., Tanimoto Y.: Wedge-local fields in integrable models with bound states. Commun. Math. Phys. 340, 661–697 (2015). doi: 10.1007/s00220-015-2448-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. DH14.
    Duch P., Herdegen A.: Massless asymptotic fields and Haag–Ruelle theory. Lett. Math. Phys. 105, 245–277 (2014). doi: 10.1007/s11005-014-0733-y ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Du13.
    Duell, M.: Scattering in quantum field theories without mass-gap, Araki–Haag approach. Diploma thesis (unpublished) (2013)Google Scholar
  15. Dy05.
    Dybalski W.: Haag–Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005). doi: 10.1007/s11005-005-2294-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Dy09.
    Dybalski, W.: Spectral theory of automorphism groups and particle structures in quantum field theory. Ph.D. thesis, Georg-August-Universität Göttingen (2009). arXiv:0901.3127
  17. DyP13.
    Dybalski W., Pizzo A.: Coulomb scattering in the massless Nelson model I. Foundations of two-electron scattering. J. Stat. Phys. 154, 543–587 (2014). doi: 10.1007/s10955-013-0857-y MathSciNetCrossRefzbMATHGoogle Scholar
  18. Fre85.
    Fredenhagen K.: A remark on the cluster theorem. Commun. Math. Phys. 97, 461–463 (1985). doi: 10.1007/BF01213409 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. Ha58.
    Haag R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112, 669–673 (1958). doi: 10.1103/PhysRev.112.669 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. Hep65.
    Hepp K.: On the connection between the LSZ and Wightman quantum field theory. Commun. Math. Phys. 1, 95–111 (1965). doi: 10.1007/BF01646494 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. Hor90.
    Horuzhy, S.S.: Introduction to Algebraic Quantum Field Theory. Kluwer Acad. Publ. (1990). doi: 10.1007/978-94-009-1179-6
  22. Hrb71.
    Herbst I.W.: One-particle operators and local internal symmetries. J. Math. Phys. 12, 2480–2490 (1971). doi: 10.1063/1.1665560 ADSMathSciNetCrossRefGoogle Scholar
  23. Hrd13.
    Herdegen A.: Infraparticle problem, asymptotic fields and Haag–Ruelle theory. Ann. Henri Poincaré 15, 345–367 (2013). doi: 10.1007/s00023-013-0242-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. HS65.
    Haag R., Swieca J.A.: When does a quantum field theory describe particles?. Commun. Math. Phys. 1, 308–320 (1965). doi: 10.1007/BF01645906 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. Lan74.
    Landau L.J.: On local functions of fields. Commun. Math. Phys. 39, 49–62 (1974). doi: 10.1007/BF01609170 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. MS14.
    Morchio G., Strocchi F.: The infrared problem in QED: a lesson from a model with Coulomb interaction and realistic photon emission. Ann. Henri Poincaré 17(10), 2699–2739 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. RS3.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, Vol. 3, Scattering Theory. Academic Press, San Diego, California (1979)zbMATHGoogle Scholar
  28. RS61.
    Reeh H., Schlieder S.: Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Feldern. Il Nuovo Cimento 22, 1051–1068 (1961). doi: 10.1007/BF02787889 ADSCrossRefzbMATHGoogle Scholar
  29. Ru62.
    Ruelle D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147–163 (1962). doi: 10.5169/seals-113272 MathSciNetzbMATHGoogle Scholar
  30. vN50.
    von Neumann J.: Functional Operators, Volume II: The Geometry of Orthogonal Spaces. Annals of Mathematics Studies 22. Princeton University Press, Princeton (1950)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations