Skip to main content
Log in

Compressible Fluids Driven by Stochastic Forcing: The Relative Energy Inequality and Applications

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show the relative energy inequality for the compressible Navier–Stokes system driven by a stochastic forcing. As a corollary, we prove the weak–strong uniqueness property (pathwise and in law) and convergence of weak solutions in the inviscid-incompressible limit. In particular, we establish a Yamada–Watanabe type result in the context of the compressible Navier–Stokes system, that is, pathwise weak–strong uniqueness implies weak–strong uniqueness in law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breit D.: Existence theory for stochastic power law fluids. J. Math. Fluid Mech. 17, 295–326 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Breit D., Feireisl E., Hofmanová M.: Incompressible limit for compressible fluids with stochastic forcing. Arch. Ration. Mech. Anal. 222(2), 895–926 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breit, D., Feireisl, E., Hofmanová, M.: Local strong solutions to the stochastic compressible Navier–Stokes system. Preprint at arXiv:1606.05441v1

  4. Breit D., Hofmanová: Stochastic Navier–Stokes equations for compressible fluids. Indiana Univ. Math. J. 65(4):1183–1250 2016

  5. Dafermos C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Lellis C., Székelyhidi L. Jr: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Debussche A., Romito M.: Existence of densities for the 3D Navier–Stokes equations driven by Gaussian noise. Probab. Theory Related Fields 158(3-4), 575–596 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  9. Feireisl E., Novotný A.: Weak–strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feireisl E., Novotný A., Sun Y.: Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60, 611–631 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flandoli F., Romito M.: Markov selections for the 3D stochastic Navier–Stokes equations. Probab. Theory Related Fields 140(3-4), 407–458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Germain P.: Weak–strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Glatt-Holtz N., Šverák V., Vicol V.: On inviscid limits for the stochastic Navier–Stokes equations and related models. Arch. Ration. Mech. Anal. 217(2), 619–649 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glatt-Holtz N.E., Vicol V.C.: Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab. 42(1), 80–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jakubowski A.: The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. I Primenen. 42(1), 209–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karatzas I., Shreve S.: Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York (1991)

  17. Klein R., Botta N., Schneider T., Munz C.D., Roller S., Meister A., Hoffmann L., Sonar T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Eng. Math. 39, 261–343 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leão D., Fragoso M.D., Ruffino P.: Characterization of Radon spaces. Stat. Probab. Lett. 42, 409–413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leger N., Vasseur A.: Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal. 201(1), 271–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Masmoudi N.: Incompressible inviscid limit of the compressible Navier–Stokes system. Ann. Inst. H. Poincaré, Anal. Non linéaire 18, 199–224 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mellet A., Vasseur A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 39(4), 1344–1365 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ondreját M., Seidler J., Brzeźniak Z.: Invariant measures for stochastic nonlinear beam and wave equations. J. Diff. Equ. 260(5), 4157–4179 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Röckner M., Scmuland B., Zhang X.: Yamada–Watanabe theorem for stochastic evolution equations in infinite dimensions. Condens. Matter Phys. 11, 248–259 (2008)

    Article  Google Scholar 

  24. Saint-Raymond L.: Hydrodynamic limits: some improvements of the relative entropy method. Annal. I.H.Poincaré-AN. 26, 705–744 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Valli A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (4) 130, 197–213 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Valli A., Zajaczkowski M.: Navier–Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Communicated by M. Hairer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breit, D., Feireisl, E. & Hofmanová, M. Compressible Fluids Driven by Stochastic Forcing: The Relative Energy Inequality and Applications. Commun. Math. Phys. 350, 443–473 (2017). https://doi.org/10.1007/s00220-017-2833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2833-x

Navigation