Skip to main content
Log in

Slow and Fast Escape for Open Intermittent Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altmann E.G., Portela J.S.E., Tél T.: Leaking chaotic systems. Rev. Mod. Phys. 85, 869–918 (2013)

    Article  ADS  Google Scholar 

  2. Bahsoun W., Vaienti S.: Metastability of certain intermittent maps. Nonlinearity 25, 107–124 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Baladi V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, vol. 16. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  4. Bandtlow O.F., Jenkinson O., Pollicott M.: Periodic points, escape rates and escape measures. In: Bahsoun, W., Bose, C., Froyland, G. (eds) Ergodic Theory Open Dynamics and Coherent Structures. Springer Proceedings in Mathematics and Statistics, vol. 70, pp. 41–58. Springer, New York (2014)

    Chapter  Google Scholar 

  5. Billingsley, P.: Probability and Measure. Wiley Series in Probability and Statistics, Anniversary edn. Wiley, Hoboken (2012)

  6. Bruin H., Demers M.F., Melbourne I.: Existence and convergence properties of physical measures for certain dynamical systems with holes. Ergod. Theory Dyn. Syst. 30, 687–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunimovich L., Yurchenko A.: Where to place a hole to achieve a maximal escape rate. Isr. J. Math. 182, 229–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buzzi J., Sarig O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Theory Dyn. Syst. 23, 1383–1400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cencova N.N.: A natural invariant measure on Smale’s horseshoe. Sov. Math. Dokl. 23, 87–91 (1981)

    MathSciNet  MATH  Google Scholar 

  10. Chernov N., Markarian R.: Ergodic properties of Anosov maps with rectangular holes. Bol. Soc. Bras. Mat. 28, 271–314 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chernov N., Markarian R., Troubetskoy S.: Conditionally invariant measures for Anosov maps with small holes. Ergod. Theory Dyn. Syst. 18, 1049–1073 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chernov N., van dem Bedem H.: Expanding maps of an interval with holes. Ergod. Theory Dyn. Syst. 22, 637–654 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Collet P., Martínez S., Maume-Deschamps V.: On the existence of conditionally invariant probability measures in dynamical systems. Nonlinearity 13, 1263–1274 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Collet P., Martínez S., Schmitt B.: The Yorke-Pianigiani measure and the asymptotic law on the limit Cantor set of expanding systems. Nonlinearity 7, 1437–1443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Demers M.F.: Markov extensions for dynamical systems with holes: an application to expanding maps of the interval. Isr. J. Math. 146, 189–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demers M.F.: Markov extensions and conditionally invariant measures for certain logistic maps with small holes. Ergod. Theory Dyn. Syst. 25, 1139–1171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Demers, M.F.: Dispersing billiards with small holes. In: Ergodic Theory, Open Dynamics and Coherent Structures, Springer Proceedings in Mathematics, vol. 70, pp. 137–170 (2014)

  18. Demers M.F.: Escape rates and physical measures for the infinite horizon Lorentz gas with holes. Dyn. Syst. Int. J. 28, 393–422 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Demers M.F., Fernandez B.: Escape rates and singular limiting distributions for intermittent maps with holes. Trans. Am. Math. Soc. 368, 4907–4932 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Demers, M.F., Todd, M.: Equilibrium states, pressure and escape for multimodal maps with holes. Isr. J. Math.

  21. Demers M.F., Wright P.: Behavior of the escape rate function in hyperbolic dynamical systems. Nonlinearity 25, 2133–2150 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Demers M.F., Wright P., Young L.-S.: Escape rates and physically relevant measures for billiards with small holes. Commun. Math. Phys. 294, 353–388 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Demers M.F., Wright P., Young L.-S.: Entropy, Lyapunov exponents and escape rates in open systems. Ergod. Theory Dyn. Syst. 32(4), 1270–1301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Demers M.F., Young L.-S.: Escape rates and conditionally invariant measures. Nonlinearity 19, 377–397 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dettmann C.P., Georgiou O.: Survival probability for the stadium billiard. Phys. D 238, 2395–2403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dettman C.P., Georgiou O., Knight G., Klages R.: Dependence of chaotic diffusion on the size and position of holes. Chaos 22, 023132/1–023132/12 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Dettmann C.P., Rahman M.R.: Survival probability for open spherical billiards. Chaos 24, 043130 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. Dolgopyat, D., Wright, P.: The diffusion coefficient for piecewise expanding maps of the interval with metastable states. Stochastics and Dynamics 12: paper 1150005 (2012)

  29. Ferguson A., Pollicott M.: Escape rates for Gibbs measures. Ergod. Theory Dyn. Syst. 32, 961–988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Froyland G., Murray R., Stancevic O.: Spectral degeneracy and escape dynamics for intermittent maps with a hole. Nonlinearity 24, 2435–2463 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Froyland, G., Padberg-Gehle, K.: Almost-invariant and finite-time coherent sets: directionality, duration, and diffusion. In: Bahsoun, W.,Bose, C., Froyland, G. (eds.) Ergodic Theory, Open Dynamics, and Coherent Structures. Proceedings in Mathematics and Statistics, vol. 70, pp. 171–216. Springer, New York (2014)

  32. Gonzalez-Tokman C., Hunt B., Wright P.: Approximating invariant densities for metastable systems. Ergod. Theory Dyn. Syst. 34, 1230–1272 (2014)

    Article  MATH  Google Scholar 

  33. Hennion, H., Hervé, L.: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-compactness. Lecture Notes in Mathematics, vol. 1766. Springer, Berlin (2001)

  34. Iommi G.: Multifractal analysis for countable Markov shifts. Ergod. Theory Dyn. Syst. 25, 1881–1907 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iommi G., Jordan T., Todd M.: Recurrence and transience for suspension flows. Isr. J. Math. 209, 547–592 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Iommi G., Todd M.: Natural equilibrium states for multimodal maps. Commun. Math. Phys. 300, 65–94 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Iommi G., Todd M.: Dimension theory for multimodal maps. Ann. Henri Poincaré 12, 591–620 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Jordan T., Rams M.: Multifractal analysis of weak Gibbs measures for non-uniformly expanding C 1 maps. Ergod. Theory Dyn. Syst. 31, 143–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kato T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer, Berlin (1980)

    Google Scholar 

  40. Keller G., Liverani C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28(4), 141–152 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Keller G., Liverani C.: Rare events, escape rates and quasistationarity: some exact formulae. J. Stat. Phys. 135, 519–534 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Knight G., Munday S.: Escape rate scaling in infinite measure preserving systems. J. Phys. A 49, paper 85101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liverani C., Maume-Deschamps V.: Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set. Annales de l’Institut Henri Poincaré Probability and Statistics 39, 385–412 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Liverani C., Saussol B., Vaienti S.: Conformal measure and decay of correlation for covering weighted systems. Ergod. Theory Dyn. Syst. 18(6), 1399–1420 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liverani C., Saussol B., Vaienti S.: A probabilistic approach to intermittency. Ergod. Theory Dyn. Syst. 19, 671–685 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mauldin R., Urbański M.: Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge Tracts in Mathematics, vol. 148. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  47. Pianigiani G., Yorke J.: Expanding maps on sets which are almost invariant: decay and chaos. Trans. Am. Math. Soc. 252, 351–366 (1979)

    MathSciNet  MATH  Google Scholar 

  48. Sarig O.: Thermodynamic formalism for countable Markov shifts. Ergod. Theory Dyn. Syst. 19, 1565–1593 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sarig O.: Thermodynamic formalism for null recurrent potentials. Isr. J. Math. 121, 285–311 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sarig O.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217, 555–577 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Sarig O.: Existence of Gibbs measures for countable Markov shifts. Proc. Am. Math. Soc. 131, 1751–1758 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yarmola T.: Sub-exponential mixing of random billiards driven by thermostats. Nonlinearity 26, 1825–1837 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Young L.S.: Some large deviation results for dynamical systems. Trans. Am. Math. Soc. 318, 525–543 (1990)

    MATH  Google Scholar 

  54. Young L.S.: Recurrence times and rates of mixing. Isr. J. Math. 110, 153–188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zweimüller R.: Invariant measures for general(ized) induced transformations. Proc. Am. Math. Soc. 133, 2283–2295 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Demers.

Additional information

Communicated by C. Liverani

MD was partially supported by NSF grant DMS 1362420. This project was started as part of an RiGs grant through ICMS, Scotland. The authors would like to thank ICMS for its generous hospitality. They would also like to thank AIM (workshop on Stochastic Methods for Non-Equilibrium Dynamical Systems) and the ICERM Semester Program on Dimension and Dynamics where some of this work was carried out. We thank the referees for useful suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demers, M.F., Todd, M. Slow and Fast Escape for Open Intermittent Maps. Commun. Math. Phys. 351, 775–835 (2017). https://doi.org/10.1007/s00220-017-2829-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2829-6

Navigation