Advertisement

Communications in Mathematical Physics

, Volume 350, Issue 2, pp 845–891 | Cite as

Distorted Plane Waves on Manifolds of Nonpositive Curvature

  • Maxime IngremeauEmail author
Article

Abstract

We will consider the high frequency behaviour of distorted plane waves on manifolds of nonpositive curvature which are Euclidean or hyperbolic near infinity, under the assumption that the curvature is negative close to the trapped set of the geodesic flow and that the topological pressure associated to half the unstable Jacobian is negative. We obtain a precise expression for distorted plane waves in the high frequency limit, similar to the one in Guillarmou and Naud (Am J Math 136:445–479, 2014) in the case of convex co-compact manifolds. In particular, we will show \({L_{loc}^\infty}\) bounds on distorted plane waves that are uniform with frequency. We will also show a small-scale equidistribution result for the real part of distorted plane waves, which implies sharp bounds for the volume of their nodal sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bon14.
    Bonthonneau Y.: Long time quantum evolution of observables. Commun. Math Phys. 343(1), 311–359 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. Bru78.
    Brüning J.: Über knoten von eigenfunktionen des Laplace–Beltrami-operators. Math. Z. 158(1), 15–21 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. DF88.
    Donnelly H., Fefferman C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. DG14.
    Dyatlov S., Guillarmou C.: Microlocal limits of plane waves and Eisenstein functions. Ann. Sci. Éc. Norm. Sup. 47(2), 371–448 (2014)MathSciNetzbMATHGoogle Scholar
  5. Don92.
    Dong R.T.: Nodal sets of eigenfunctions on Riemann surfaces. J. Diff. Geom. 36(Part 2), 493–506 (1992)MathSciNetzbMATHGoogle Scholar
  6. DV12.
    Datchev K., Vasy A.: Gluing semiclassical resolvent estimates via propagation of singularities. Int. Math. Res. Not. 62, 5409–5443 (2012)MathSciNetzbMATHGoogle Scholar
  7. Dya11.
    Dyatlov S.: Microlocal limits of Eisenstein functions away from the unitarity axis. J. Spectr. Theory 2, 181–202 (2011)MathSciNetzbMATHGoogle Scholar
  8. Ebe01.
    Eberlein, P. Geodesic flows in manifolds of nonpositive curvature. In: Proceedings of Symposia in Pure Mathematics, vol. 69, pp. 525–572. American Mathematical Society, Providence (1998, 2001)Google Scholar
  9. GN14.
    Guillarmou C., Naud F.: Equidistribution of Eisenstein series for convex co-compact hyperbolic manifolds. Am. J. Math. 136, 445–479 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Han15.
    Han X.: Small scale quantum ergodicity in negatively curved manifolds. Nonlinearity 28(9), 3263–3288 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. Hez16a.
    Hezari, H.: Applications of small scale quantum ergodicity in nodal sets. arXiv preprint arXiv:1606.02057 (2016)
  12. Hez16b.
    Hezari, H.: Inner radius of nodal domains of quantum ergodic eigenfunctions. arXiv preprint arXiv:1606.03499 (2016)
  13. Hez16c.
    Hezari, H.: Quantum ergodicity and L p norms of restrictions of eigenfunctions. arXiv preprint arXiv:1606.08066 (2016)
  14. HR14.
    Hezari H., Riviere G.: L p norms, nodal sets, and quantum ergodicity. Adv. Math. 290, 938–966 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. HT15.
    Hassell A., Tacy M.: Improvement of eigenfunction estimates on manifolds of nonpositive curvature. vol. 27, pp. 1435–1451 (2015)Google Scholar
  16. Ing15.
    Ingremeau, M.: Distorted plane waves in chaotic scattering. arXiv preprint arXiv:1507.02970 (2015)
  17. JN15.
    Jakobson, D., Naud, F.: On the nodal lines of Eisenstein series on Schottky surfaces. Commun. Math. Phys. arXiv preprint arXiv:1503.06589 (2015) (to appear)
  18. Jos08.
    Jost J.: Riemannian geometry and geometric analysis, vol. 42005. Springer, Heidelberg (2008)Google Scholar
  19. KH95.
    Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems (1995)Google Scholar
  20. Log16a.
    Logunov, A.: Nodal sets of laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. arXiv preprint arXiv:1605.02587 (2016)
  21. Log16b.
    Logunov, A.: Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. arXiv preprint arXiv:1605.02589 (2016)
  22. LR15.
    Lester, S., Rudnick, Z.: Small scale equidistribution of eigenfunctions on the torus. Commun. Math. Phys. arXiv preprint arXiv:1508.01074 (2015) (to appear)
  23. Mel95.
    Melrose, R.B.: Geometric Scattering Theory. Cambridge University Press, (0995)Google Scholar
  24. NZ09.
    Nonnenmacher S., Zworski M.: Quantum decay rates in chaotic scattering. Acta Math. 203, 149–233 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Rug07.
    Ruggiero R.: Dynamics and global geometry of manifolds without conjugate points. Ensaios Matemáticos 12, 1–181 (2007)MathSciNetzbMATHGoogle Scholar
  26. Sog88.
    Sogge C.D.: Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 77(1), 123–138 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Sog15.
    Sogge, C.D.: Improved critical eigenfunction estimates on manifolds of nonpositive curvature. arXiv preprint arXiv:1512.03725 (2015)
  28. Sog15.
    Sogge C.D., Sogge C.D.: Lower bounds on the hypersurface measure of nodal sets. Math. Res. Lett. 18, 27–39 (2011)CrossRefzbMATHGoogle Scholar
  29. Vas12.
    Vasy, A.: Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates. Inverse problems and applications. Inside Out II, vol. 60 (2012)Google Scholar
  30. Yau93.
    Yau, S.-T.: Open problems in geometry. In: Proc. Sympos. Pure Math., vol. 54, Part 1:1 (1993)Google Scholar
  31. Zwo12.
    Zworski M.: Semiclassical Analysis. AMS, Providence (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Universite Paris-SudOrsayFrance

Personalised recommendations