Skip to main content
Log in

Scaling of Harmonic Oscillator Eigenfunctions and Their Nodal Sets Around the Caustic

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the scaling asymptotics of the eigenspace projection kernels \({\Pi_{\hbar, E}(x,y)}\) of the isotropic Harmonic Oscillator \({\hat{H}_{\hbar} = - \hbar^2 \Delta +|x|^2}\) of eigenvalue \({E = \hbar(N + \frac{d}{2})}\) in the semi-classical limit \({\hbar \to 0}\) . The principal result is an explicit formula for the scaling asymptotics of \({\Pi_{\hbar, E}(x,y)}\) for x, y in a \({\hbar^{2/3}}\) neighborhood of the caustic \({\mathcal{C}_E}\) as \({\hbar \rightarrow 0.}\) The scaling asymptotics are applied to the distribution of nodal sets of Gaussian random eigenfunctions around the caustic as \({\hbar \to 0}\) . In previous work we proved that the density of zeros of Gaussian random eigenfunctions of \({\hat{H}_{\hbar}}\) have different orders in the Planck constant \({\hbar}\) in the allowed and forbidden regions: In the allowed region the density is of order \({\hbar^{-1}}\) while it is \({\hbar^{-1/2}}\) in the forbidden region. Our main result on nodal sets is that the density of zeros is of order \({\hbar^{-\frac{2}{3}}}\) in an \({\hbar^{\frac{2}{3}}}\) -tube around the caustic. This tube radius is the ‘critical radius’. For annuli of larger inner and outer radii \({\hbar^{\alpha}}\) with \({0 < \alpha < \frac{2}{3}}\) we obtain density results that interpolate between this critical radius result and our prior ones in the allowed and forbidden region. We also show that the Hausdorff (d−2)-dimensional measure of the intersection of the nodal set with the caustic is of order \({\hbar^{- \frac{2}{3}}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrdinger operators. Mathematical Notes, 29. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1982)

  2. Aronszajn N.: Theory of reproducing kernels. Trans. Am. Math. Soc 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azais J.M., Wsebor M.: Level Sets and Extrema of Gaussian Fields. Wiley, Hoboken (2009)

    Book  Google Scholar 

  4. Balazs N.L., Pauli H.C., Dabbousi O.B.: Tables of Weyl fractional integrals for the Airy function. Math. Comput 33(145), 353–358+s1s9 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berry M.V.: Semi-classical mechanics in phase space: a study of Wigner’s function. Philos. Trans. R. Soc. Lond. Ser. A 287(1343), 237–271 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bies W.E., Heller E.J.: Nodal structure of chaotic eigenfunctions. J. Phys. A 35(27), 5673–5685 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bleher P., Shiffman B., Zelditch S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142(2), 351–395 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Canzani Y., Hanin B.: Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law. Anal. PDE 8(7), 1707–1731 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canzani, Y., Toth J.A.: Nodal sets of Schroedinger eigenfunctions in forbidden regions. Ann. Henri Poincare 17(11): 3063–3087 (2016). arXiv:1502.00732

  10. Folland G.: Harmonic analysis in phase space. Ann. of Math. Stud. vol. 122. Princeton University Press, Princeton (1989)

    Book  Google Scholar 

  11. Frenzen C.L., Wong R.: Uniform asymptotic expansions of Laguerre polynomials. SIAM J. Math. Anal. 19(5), 12321248 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilbert, D.J.: Eigenfunction expansions associated with the one-dimensional Schrdinger operator. Operator methods in mathematical physics 89105. Oper. Theory Adv. Appl., vol. 227. Birkhauser/Springer Basel AG, Basel (2013)

  13. Hanin B., Zelditch, S., Zhou, P.: Nodal sets of random eigenfunctions for the isotropic harmonic oscillator. IMRN 13, 4813–4839 (2015). arXiv:1310.4532

  14. Hanin, B., Zelditch, S., Zhou,P.: The ensemble at infinity for Random Eigenfunctions of the isotropic harmonic oscillator (in preparation)

  15. Hanin, B., Zelditch, S., Zhou, P.: Wigner distributions for harmonic oscillators (in preparation)

  16. Hislop P.D., Sigal I.M.: Introduction to Spectral Theory. With Applications to Schrdinger Operators. Applied Mathematical Sciences, vol. 113. Springer-Verlag, New York (1996)

    Google Scholar 

  17. Lars Hörmander.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics in Mathematics. Springer-Verlag, Berlin (2003)

    Google Scholar 

  18. Imekraz, R., Robert, D., Thomann, L.: On random Hermite series. Trans. Am. Math. Soc. 368(4):2763–2792 (2016). arXiv:1403.4913

  19. Jin, L.: Semiclassical Cauchy estimates and applications. Trans. Amer. Math. Soc. 369, 975–995 (2017)

  20. Koch H., Tataru D.: Daniel Lp eigenfunction bounds for the Hermite operator. Duke Math. J. 128(2), 369–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Olver, F.W. J.: Asymptotics and special functions. AKP Classics. A K Peters, Ltd.,Wellesley, MA (1997) (Reprint of the 1974 original [Academic Press, New York; MR0435697])

  22. Poiret A., Robert D., Thomann L.: Random-weighted Sobolev inequalities on d and application to Hermite functions. Ann. Henri Poincare 16(2), 651–689 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Reid W.H.: Integral representations for products of Airy functions. Zeitschrift fr angewandte Mathematik und Physik ZAMP 46(2), 159–170 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Szegö, G.: Orthogonal polynomials. American Mathematical Society, Colloquium Publications, vol. XXIII. American Mathematical Society, Providence, R.I (1975)

  25. Thangavelu, S.: Lectures on Hermite and Laguerre expansions. Mathematical Notes, 42. Princeton University Press, Princeton (1993)

  26. Titchmarsh E.C.: Eigenfunction expansions associated with second-order differential equations. Part I. Second Edition. Clarendon Press, Oxford (1962)

    MATH  Google Scholar 

  27. Toth J.A., Wigman I.: Counting open nodal lines of random waves on planar domains. Int. Math. Res. Not. IMRN (18), 3337–3365 (2009)

  28. Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys 159(1), 151–174 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Hanin.

Additional information

Communicated by J. Marklof

SZ is partially supported by NSF Grant DMS- 1541126, and BH is partially supported by NSF Grant DMS-1400822.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanin, B., Zelditch, S. & Zhou, P. Scaling of Harmonic Oscillator Eigenfunctions and Their Nodal Sets Around the Caustic. Commun. Math. Phys. 350, 1147–1183 (2017). https://doi.org/10.1007/s00220-016-2807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2807-4

Navigation