Skip to main content
Log in

Waves in the Witten Bubble of Nothing and the Hawking Wormhole

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the propagation of the scalar waves in the Witten space-time called “bubble of nothing” and in its remarkable sub-manifold, the Lorentzian Hawking wormhole. Due to the global hyperbolicity, the global Cauchy problem is well-posed in the functional framework associated with the energy. We perform a complete spectral analysis that allows us to get an explicit form of the solutions in terms of special functions. If the effective mass is non zero, the profile of the waves is asymptotically almost periodic in time. In contrast, the massless case is dispersive. We develop the scattering theory, classical as well as quantum. The quantized scattering operator leaves invariant the Fock vacuum: there is no creation of particles. The resonances can be defined in the massless case and they are purely imaginary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharony, O., Fabinger, M., Horowitz, G.T., Silverstein, E.: Clean time-dependent string backgrounds from bubble baths. J. High Energy Phys. 7(007), 35 (2002)

  2. Allen B.: Vacuum states in de Sitter space. Phys. Rev. D. 32(12), 3136–3149 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aslanbeigi S., Buck M.: A preferred ground state for the scalar field in de Sitter space. J. High Energy Phys. 8(039), 33 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bachelot A.: Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric. Ann. Inst. Henri Poincaré Physique théorique 61(4), 411–441 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Bailin D., Love A.: Kaluza-Klein theories. Rep. Prog. Phys. 50, 1087–1170 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Baricz, A., Mezö, I.: On the generalization of the Lambert W function with applications in theoretical physics (2014, preprint). arXiv:1408.3999

  7. Baskin D., Vasy A., Wunsch J.: Asymptotics of radiation fields in asymptotically Minkowski space. Am. J. Math. 137(5), 1293–1364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhawal B., Vishveshwara C.V.: Scalar waves in the Witten bubble spacetime. Phys. Rev. D. (3) 42(6), 1996–2003 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. Birrel N.D., Davies P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  10. Blanco-Pillado J.J., Shlaer B.: Bubbles of nothing in flux compactifications. Phys. Rev. D. 82, 086015 (2010)

    Article  ADS  Google Scholar 

  11. Blanco-Pillado, J.J., Ramadhan, H.S., Shlaer, B.: Bubbles from nothing. J. Cosmol. Astropart. Phys. 2012(1), 45 (2012)

  12. Blanco-Pillado J.J., Shlaer B., Sousa K., Urrestilla J.: Bubbles of nothing and supersymmetric compactifications. J. Cosmol. Astropart. Phys. 10, 002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bousso R., Maloney A., Strominger A.: Conformal vacua and entropy in de Sitter space. Phys. Rev. D. 65, 104039 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Brill D.R., Horowitz G.T.: Negative energy in string theory. Phys. Lett. B262, 437–443 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  15. Brill D.R., Matlin M.D.: Geodesic motion in a Kaluza-Klein bubble spacetime. Phys. Rev. D. (3) 39(10), 3151–3154 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bros J., Moschella U.: Two-point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 8, 327–392 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brown A.R., Dahlen A.: On “Nothing”. Phys. Rev. D. 85, 104026 (2012)

    Article  ADS  Google Scholar 

  18. Brown A.R.: The decay of hot KK space. Phys. Rev. D. 90, 104017 (2014)

    Article  ADS  Google Scholar 

  19. Bunch T.S., Davies P.C.W.: Quantum field theory in de Sitter space: renormalization by point-splitting. Proc. R. Soc. Lond. A 360, 117–134 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  20. Cagnac F., Choquet-Bruhat Y.: Solution globale d’une équation non linéaire sur une variété hyperbolique. J. Math. Pures Appl. (9) 63(4), 377–390 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Choquet-Bruhat Y., Cotsakis S.: Global hyperbolicity and completeness. J. Geom. Phys. (43) 4, 345–350 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Choquet-Bruhat Y.: General Relativity and the Einstein Equations. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  23. Culetu H.: Light dragging phenomenon and expanding wormholes. J. Korean Phys. Soc. 57(3), 419–423 (2010)

    Article  ADS  Google Scholar 

  24. Dereziński J., Gérard C.: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  25. Dereziński J., Wrochna M.: Exactly solvable Schrödinger operators. Ann. Henri Poincaré. 12(2), 397–418 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Dimock J.: Quantum Mechanics end Quantum Field Theory. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  27. Dowker F., Gauntlett J.P., Gibbons G.W., Horowitz G.T.: The decay of magnetic fields in Kaluza-Klein theory. Phys. Rev. D. 52, 6929–6940 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. Epstein H., Moschella U.: de Sitter tachyons and related topics. Commun. Math. Phys. 336(1), 381–430 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Everitt W.N., Kalf H.: The Bessel differential equation and the Hankel transform. J. Comput. Appl. Math. 208, 3–19 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Fulling S.A.: Aspects of Quantum Field Theory in Curved Spacetime. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  31. Galstian A., Yagdjian K.: Fundamental solutions for the Klein-Gordon equation in de Sitter spacetime. Commun. Math. Phys. 285, 293–344 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gibbons, G., Hartnoll, S.A.: Gravitational instability in higher dimensions. Phys. Rev. D. 66(6):064024, 17pp (2002)

  33. Hawking S.W.: Quantum coherence down the wormhole. Phys. Lett. B. 195(3), 337–343 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  34. Hawking S.W.: Wormholes in spacetime. Phys. Rev. D. 37(4), 904–910 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Hirosawa H., Wirth J.: Generalised energy conservation law for wave equations with variable propagation speed. J. Math. Anal. Appl. 358(1), 56–74 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Horowitz G.T., Maeda K.: Colliding Kaluza-Klein bubbles. Class. Quant. Grav. 19, 5543–5556 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Horowitz, G.T.: Tachyon condensation and black strings. JHEP 2005(08), 91 (2005)

  38. Kay B.S.: A uniqueness result in the Segal-Weinless approach to linear Bose fields. J. Math. Phys. 20, 1712–1713 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  39. Kay I., Moses H.E.: Reflectionless transmission through dielectrics and scattering potentials. J. Appl. Phys. 27, 1503–1508 (1956)

    Article  ADS  MATH  Google Scholar 

  40. Kunz J., Nedkova P.G., Stelea C.: Charged black holes on Kaluza-Klein bubbles. Nucl. Phys. B. 874, 773–791 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Leray J.: Hyperbolic differential equations. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  42. Lions, J-L., Magenes, E.: Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968)

  43. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  44. Pearson D.B.: Quantum Scattering and Spectral Theory. Academic Press, Boston (1988)

    MATH  Google Scholar 

  45. Reed M., Simon B.: Methods of modern mathematical physics II, Fourier Analysis, Self-Adjointness. Academic Press, Boston (1975)

    MATH  Google Scholar 

  46. Sánchez, M. Recent progress on the notion of global hyperbolicity. In: Advances in Lorentzian geometry, AMS/IP Stud. Adv. Math., vol. 49, pp. 105–124 (2011)

  47. Stotyn S., Mann R.B.: Magnetic charge can locally stabilize Kaluza-Klein bubbles. Phys. Lett. B. 705(3), 269–272 (2011)

    Article  ADS  Google Scholar 

  48. Tanabe, H.: Functional analytic methods for partial differential equations. In: Pure and Applied Mathematics, vol. 204. Marcel Dekker New-York (1997)

  49. Vasy A.: The wave equation on asymptotically de Sitter-like spaces. Adv. Math. 223, 49–97 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vasy A.: Resolvents, Poisson operators and scattering matrices on asymptotically hyperbolic and de Sitter spaces. J. Spectr. Theory. 4, 643–673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Visser M.: Lorentzian Wormholes. Springer Verlag, Berlin (1995)

    Google Scholar 

  52. Weidmann J.: Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, vol. 68. Springer-Verlag, Berlin (1980)

    Book  Google Scholar 

  53. Weinberg S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Witten E.: Instability of the Kaluza-Klein vacuum. Nucl Phys. B. 195, 481–492 (1982)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Bachelot.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachelot, A. Waves in the Witten Bubble of Nothing and the Hawking Wormhole. Commun. Math. Phys. 351, 599–651 (2017). https://doi.org/10.1007/s00220-016-2792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2792-7

Navigation