Skip to main content
Log in

Standing Waves in Near-Parallel Vortex Filaments

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A model derived in (Klein et al., J Fluid Mech 288:201–248, 1995) for n near-parallel vortex filaments in a three dimensional fluid region takes into consideration the pairwise interaction between the filaments along with an approximation for motion by self-induction. The same system of equations appears in descriptions of the fine structure of vortex filaments in the Gross–Pitaevski model of Bose–Einstein condensates. In this paper we construct families of standing waves for this model, in the form of n co-rotating near-parallel vortex filaments that are situated in a central configuration. This result applies to any pair of vortex filaments with the same circulation, corresponding to the case n = 2. The model equations can be formulated as a system of Hamiltonian PDEs, and the construction of standing waves is a small divisor problem. The methods are a combination of the analysis of infinite dimensional Hamiltonian dynamical systems and linear theory related to Anderson localization. The main technique of the construction is the Nash–Moser method applied to a Lyapunov–Schmidt reduction, giving rise to a bifurcation equation over a Cantor set of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banica V., Miot E.: Global existence and collisions for symmetric configurations of nearly parallel vortex filaments. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(5), 813–832 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Banica, V., Faou, E., Miot, E.: Collision of almost parallel vortex filaments. Commun. Pure Appl. Math. (2016) (to appear)

  3. Bourgain J.: Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5(4), 629–639 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential. J. Eur. Math. Soc. (JEMS) 15(1), 229–286, 103–122 (2013) [NATO Adv. Sci. Inst. Ser. B Phys., vol. 331. Plenum, New York (1994)]

  5. Berti M., Corsi L., Procesi M.: An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Commun. Math. Phys. 334, 1413–1454 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Contreras, A., Jerrard, R.: Nearly Parallel Vortex Filaments in the 3D Ginzburg-Landau Equations (2016). arXiv:1606.00732

  7. Craig W., Wayne C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46(11), 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Craig, W., Wayne, C.E.: Periodic solutions of nonlinear Schrödinger equations and the Nash–Moser method. Hamiltonian mechanics (Toruń, 1993)

  9. Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles. Panoramas et Synthèses, 9. Société Mathématique de France, Paris (2000)

  10. Del Pino M., Kowalczyk M.: Renormalized energy of interacting Ginzburg–Landau vortex filaments. J. Lond. Math. Soc. (2) 77, 647–665 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fröhlich J., Spencer T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation theory II. Appl. Math. Sci., vol. 51. Springer, Berlin (1986)

  13. García-Azpeitia C., Ize J.: Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators. J. Differ. Equ. 251, 3202–3227 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. García-Azpeitia C., Ize J.: Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems. J. Differ. Equ. 252, 5662–5678 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ize, J., Vignoli, A.: Equivariant degree theory. De Gruyter Series in Nonlinear Analysis and Applications, vol. 8. Walter de Gruyter, Berlin (2003)

  16. Jerrard, R., Smets, D.: in preparation (2016)

  17. Kenig C., Ponce G., Vega L.: On the interaction of nearly parallel vortex filaments. Commun. Math. Phys. 243(3), 471–483 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Klein R., Majda A., Damodaran K.K.: Simplified equations for the interaction of nearly parallel vortex filaments. J. Fluid Mech. 288, 201–248 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kappeler, T., Pöschel, J.: KdV and KAM. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 45. Springer, Berlin (2003)

  20. de la Llave, R.: A tutorial on KAM theory. Smooth ergodic theory and its applications, Proc. Sympos. Pure. Math., vol. 65. AMS (2001)

  21. Meyer K.R., Hall G.R.: An Introduction to Hamiltonian Dynamical Systems. Springer, New York (1991)

    Google Scholar 

  22. Newton, P.K.: The N-vortex problem. Analytical techniques. Applied Mathematical Sciences, vol. 145. Springer, New York (2001)

  23. Plotnikov P.I., Toland J.F.: Nash–Moser theory for standing water waves. Arch. Ration. Mech. Anal. 159, 1–83 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Craig.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, W., García-Azpeitia, C. & Yang, CR. Standing Waves in Near-Parallel Vortex Filaments. Commun. Math. Phys. 350, 175–203 (2017). https://doi.org/10.1007/s00220-016-2781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2781-x

Navigation