Skip to main content
Log in

Time-Translation Invariance of Scattering Maps and Blue-Shift Instabilities on Kerr Black Hole Spacetimes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we provide an elementary, unified treatment of two distinct blue-shift instabilities for the scalar wave equation on a fixed Kerr black hole background: the celebrated blue-shift at the Cauchy horizon (familiar from the strong cosmic censorship conjecture) and the time-reversed red-shift at the event horizon (relevant in classical scattering theory). Our first theorem concerns the latter and constructs solutions to the wave equation on Kerr spacetimes such that the radiation field along the future event horizon vanishes and the radiation field along future null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the future event horizon. Our second theorem constructs solutions to the wave equation on rotating Kerr spacetimes such that the radiation field along the past event horizon (extended into the black hole) vanishes and the radiation field along past null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the Cauchy horizon. The results make essential use of the scattering theory developed in Dafermos, Rodnianski and Shlapentokh-Rothman (A scattering theory for the wave equation on Kerr black hole exteriors (2014). arXiv:1412.8379) and exploit directly the time-translation invariance of the scattering map and the non-triviality of the transmission map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Akhmedov, E.T., Godazgar, H., Popov F.: Hawking radiation and secularly growing loop corrections. Phys. Rev. D. 93(2), 024029 (2016)

  2. Andersson L., Blue P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math 182(3), 787–853 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aretakis S.: Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations. Commun. Math. Phys. 307(1), 17–63 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Aretakis S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Ann. Henri Poincaré 12(8), 1491–1538 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Aretakis S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263(9), 2770–2831 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aretakis S.: Horizon instability of extremal black holes. Adv. Theor. Math. Phys. 19(3), 507–530 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bachelot A.: The Hawking effect. Ann. Inst. H. Poincaré Phys. Théor 70(1), 41–99 (1990)

    MATH  MathSciNet  Google Scholar 

  8. Baskin D., Wang F.: Radiation fields on Schwarzschild spacetime. Commun. Math. Phys. 331(2), 477–506 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Chandrasekhar S., Hartle J.: On crossing the Cauchy horizon of a Reissner–Nordström black-hole. Proc. R. Soc. Lond. Ser. A 384, 301–315 (1982)

    Article  ADS  MATH  Google Scholar 

  10. Christodoulou, D.: The action principle and partial differential equations. Ann. Math. Stud. 146, 319 (1999)

  11. Christodoulou, D.: The formation of black holes in general relativity, EMS monographs in mathematics. European Mathematical Society (EMS), Zürich. arXiv:0805.3880 (2009)

  12. Dafermos M.: Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations. Ann. Math. 158(3), 875–928 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dafermos M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. 58(4), 445–504 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dafermos, M., Holzegel, G., Rodnianski, I.: A scattering theory construction of dynamical vacuum black holes (2013) (to appear in J. Differential Geom.). arXiv:1306.5364

  15. Dafermos M., Rodnianski I.: Lectures on black holes and linear waves. Clay Mathematics Proceedings. Am. Math. Soc. 17, 97–205 (2013) arXiv:0811.0354

    MATH  MathSciNet  Google Scholar 

  16. Dafermos, M., Luk J.: Stability of the Kerr Cauchy horizon (in preparation)

  17. Dafermos M., Rodnianski I., Shlapentokh-Rothman Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \({|a| < M}\) . Ann. Math. 183(3), 787–913 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dafermos M., Rodnianski I. Shlapentokh-Rothman Y.: A scattering theory for the wave equation on Kerr black hole exteriors (2014). arXiv:1412.8379

  19. Dimock J., Kay B.S.: Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric 1. Ann. Phys. 175, 366–426 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Dimock J., Kay B.S.: Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric 2. J. Math. Phys. 27, 2520–2525 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Franzen A.: Boundedness of massless scalar waves on Reissner–Nordström interior backgrounds. Commun. Math. Phys. 343(2), 601–650 (2016)

    Article  ADS  MATH  Google Scholar 

  22. Franzen A.: Boundedness of massless scalar waves on Kerr interior backgrounds (2014). arXiv:1407.7093

  23. Futterman J., Handler F., Matzner R.: Scattering from Black Holes. CUP, Cambridge (1998)

  24. Gajic D.: Linear waves in the interior of extremal black holes I (2015). arXiv:1509.06568

  25. Gajic, D.: Linear waves in the interior of extremal black holes II (2015). arXiv:1512.08953

  26. Gajic, D.: Double-null foliations of Kerr–Newman (preprint)

  27. Gürsel Y., Sandberg V., Novikov I., Starobinsky A.: Evolution of scalar perturbations near the Cauchy horizon of a charged black hole. Phys. Rev. D 19(2), 413–420 (1979)

    Article  ADS  Google Scholar 

  28. Häfner, D.: Creation of fermions by rotating charged black-holes. Mém. Soc. Math. Fr. (N.S.) 117, 116 (2009)

  29. Hawking S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hintz, P.: Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime (2015). arXiv:1512.08003

  31. Luk J., Oh, S.: Proof of linear instability of the Reissner–Nordström Cauchy horizon under scalar perturbations (2015) (to appear in Duke Math. J.). arXiv:1501.04598

  32. Luk J., Sbierski J.: Instability results for the wave equation in the interior of Kerr black holes. J. Funct. Anal. 271(7), 1948–1995 (2016)

  33. Matzner R., Zamorano N., Sandberg V.: Instability of the Canchy horizon of Reissner-Nordström black holes. Phys. Rev. D 19(10), 2821–2826 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  34. McNamara J.: Behaviour of scalar perturbations of a Reissner–Nordström black hole inside the event horizon. Proc. R. Soc. Lond. Ser A 364, 121–134 (1978)

    Article  ADS  Google Scholar 

  35. McNamara J.: Instability of black hole inner horizons. Proc. R. Soc. Lond. Ser. A 358, 499–517 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  36. Nicolas, J.: Conformal scattering on the Schwarzschild metric. Ann. Inst. Fourier 66(3) (2013). arXiv:1312.1386

  37. O’Neil, B.: The Geometry of Kerr Black Holes. Peters A. K. (1995)

  38. Oppenheimer J., Snyder H.: On continued gravitational contraction. Phys. Rev 56, 455–459 (1939)

    Article  ADS  MATH  Google Scholar 

  39. Penrose, R.: In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres, p. 222. W.A. Benjamin, New York (1968)

  40. Pretorius F., Israel W.: Quasi-spherical light cones of the Kerr geometry. Class. Quantum Gravity 15(8), 2289–2301 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Sbierski J.: Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes. Anal. PDE 8(6), 1379–1420 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wald R.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Shlapentokh-Rothman.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dafermos, M., Shlapentokh-Rothman, Y. Time-Translation Invariance of Scattering Maps and Blue-Shift Instabilities on Kerr Black Hole Spacetimes. Commun. Math. Phys. 350, 985–1016 (2017). https://doi.org/10.1007/s00220-016-2771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2771-z

Navigation