Advertisement

Communications in Mathematical Physics

, Volume 349, Issue 1, pp 109–164 | Cite as

Open Gromov–Witten Invariants on Elliptic K3 Surfaces and Wall-Crossing

  • Yu-Shen LinEmail author
Article

Abstract

In this paper, we study holomorphic discs in K3 surfaces and defined the open Gromov–Witten invariants. Using this new invariant, we can establish a version of correspondence between tropical discs and holomorphic discs with non-trivial invariants. We give an example of wall-crossing phenomenon of the invariant and expect it satisfies Kontsevich–Soibelman wall-crossing formula.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butscher A.: Deformations of minimal Lagrangian submanifolds with boundary. Proc. Am. Math. Soc. 131(6), 1953–1964 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Auroux D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. GGT 1, 51–91 (2007)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Biran, P., Cornea, O.: Quantum Structures for Lagrangian Submanifolds. Preprint arXiv:0708.4221 [math.SG]
  4. 4.
    Chan : The Ooguri-Vafa metric, holomorphic discs and wall-crossing. Math. Res. Lett. 17(3), 401–414 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chan, K., Lau, S.-C., Leung, N.C.: SYZ mirror symmetry for toric Calabi–Yau manifolds. 90 (2012)Google Scholar
  6. 6.
    Denef F., Moore G.W.: Split states, entropy enigmas, holes and halos. J. High Energy Phys. 11, 129, i, 152 (2011)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Fukaya K.: Cyclic symmetry and adic convergence in Lagrangian Floer theory. Kyoto J. Math. 50(3), 521–590 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fukaya, K.: Counting pseudo-holomorphic discs in Calabi–Yau 3-folds. Tohoku Math. J. (2) 63(4), 697–727Google Scholar
  9. 9.
    Fukaya, K.: Multivalued Morse Theory, Asymptotic Analysis and Mirror Symmetry. Graphs and patterns in mathematics and theoretical physics. Proceedings of Symposia in Pure Mathematics, vol. 73, pp. 205–278. American Mathematical Society, Providence (2005)Google Scholar
  10. 10.
    Fukaya K., Ono K.: Arnold conjecture and Gromov–Witten invariant. Topology 38(5), 933–1048 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part II, AMS/IP Studies in Advanced Mathematics, vol. 46. American Mathematical Society, Providence, RI (2009)Google Scholar
  12. 12.
    Fukaya, K.: Technical details on Kuranishi structure and virtual fundamental chain. Preprint arXiv:1209.4410 [math.SG] (2012)
  13. 13.
    Gromov M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gross, M.: Examples of special Lagrangian fibrations, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 81–109. World Scientific Publishing, River Edge (2001)Google Scholar
  15. 15.
    Gross, M.: The Strominger–Yau–Zaslow Conjecture: From Torus Fibrations to Degenerations, Algebraic Geometry|Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80. Am. Math. Soc., Providence, RI, pp. 149–192 (2009)Google Scholar
  16. 16.
    Guan B., Li Q.: Complex Monge–Ampère equations and totally real submanifolds. Adv. Math. 225(3), 1185–1223 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gross M., Pandharipande R., Siebert B.: The tropical vertex. Duke Math. J. 153(2), 297–362 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gaiotto D., Moore G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299(1), 163–224 (2010)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Gaiotto D., Moore G.W., Neitzke A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Gross M., Siebert B.: From real affine geometry to complex geometry. Ann. Math. (2) 174(3), 1301–1428 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Gross M., Wilson P.M.H.: Large complex structure limits of K3 surfaces. J. Differ. Geom. 55(3), 475–546 (2000)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Greene B.R., Shapere A., Vafa C., Yau S.-T.: Stringy cosmic strings and noncompact Calabi–Yau manifolds. Nucl. Phys. B 337(1), 1–36 (1990)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Graber, T., Zaslow, E.: Open-string Gromov–Witten invariants: calculations and a mirror “theorem”. Orbifolds in Mathematics and Physics (Madison, WI, 2001). Contemporary Mathematics, vol. 310, pp. 107–121. American Mathematical Society, Providence (2002)Google Scholar
  24. 24.
    Hitchin N.J., Karlhede A., Lindström U., Roček M.: Hyper–Kähler metrics and supersymmetry. Commun. Math. Phys. 108(4), 535–589 (1987)ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Joyce D.: Special Lagrangian submanifolds with isolated conical singularities. V. Survey and applications. J. Differ. Geom. 63, 279–348 (2003)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Kontsevich, M., Soibelman, Y.: Affine Structures and Non-Archimedean Analytic Spaces. The Unity of Mathematics. Progress inMathematics, vol. 244, pp. 321–385. Birkhäuser Boston, Massachusetts (2006)Google Scholar
  27. 27.
    Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. Preprint arXiv:0811.2435v1 [math.AG] (2008)
  28. 28.
    Katz S., Liu C.-C.M.: Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc. Adv. Theor. Math. Phys. 5(1), 1–49 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Kontsevich, M., Soibelman, Y.: Homological Mirror Symmetry and Torus Fibrations. Symplectic Geometry and Mirror Symmetry (Seoul, 2000). World Sci. Publ., River Edge, NJ, pp. 203–263 (2001)Google Scholar
  30. 30.
    Kontsevich, M., Soibelman, Y.: Wall-crossing Structures in Donaldson–Thomas Invariants, Integrable Systems and Mirror Symmetry. Homological Mirror Symmetry and Tropical Geometry. Lecture Notes of the Unione Matematica Italiana, vol. 15, pp. 197–308. Springer (2014)Google Scholar
  31. 31.
    Lee J.: Family Gromov–Witten invariants for Kähler surfaces. Duke Math. J. 123(1), 209–233 (2004)zbMATHCrossRefGoogle Scholar
  32. 32.
    Lu P.: Kähler–Einstein metrics on Kummer threefold and special Lagrangian tori. Commun. Anal. Geom. 7(4), 787–806 (1999)zbMATHCrossRefGoogle Scholar
  33. 33.
    Lu, W.: Instanton Correction, Wall Crossing and Mirror Symmetry of Hitchin’s Moduli Spaces. Preprint arXiv:1010.3388 [math.AG] (2010)
  34. 34.
    Lin, Y.-S.: Reduced Open Gromov–Witten Invariants on K3 Surfaces and Multiple Cover Formula, preprint, arXiv:1609.00049
  35. 35.
    Leung, N.C.: Mirror symmetry without corrections. Commun. Anal. Geom 13, 923–5 (2001)Google Scholar
  36. 36.
    Ooguri H., Vafa C.: Summing up Dirichlet instantons. Phys. Rev. Lett. 77(16), 3296–3298 (1996)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Mikhalkin G.: Enumerative tropical algebraic geometry in R2. J. Am. Math. Soc. 18(2), 313–377 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Nishinou, T.: Disc counting on toric varieties via tropical curves. Am. J. Math. 134(6), 1423–1472 (2012)Google Scholar
  39. 39.
    Nishinou T., Siebert B.: Toric degenerations of toric varieties and tropical curves. Duke Math. J. 135(1), 1–51 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Parker, B.: Holomorphic Curves in Lagrangian Fibrations. Thesis (Ph.D.)? Stanford University (2005)Google Scholar
  41. 41.
    Pandharipande R., Solomon J., Walcher J.: Disk enumeration on the quintic 3-fold. J. Am. Math. Soc. 21(4), 1169–1209 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Reineke, M.: Moduli of Representations of Quivers, Trends in Representation Theory of Algebras and Related Topics. EMS Series of Congress Reports, pp. 589–637. European Mathematical Society, Zürich (2008)Google Scholar
  43. 43.
    Schwarz, G.: Hodge Decomposition|a Method for Solving Boundary Value Problems. Lecture Notes in Mathematics, vol. 1607. Springer, Berlin (1995)Google Scholar
  44. 44.
    Strominger A., Yau S.-T., Zaslow E.: Mirror symmetry is T-duality. Nucl. Phys. B 479(1–2), 243–259 (1996)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Wendl C.: Automatic transversality and orbifolds of punctured holomorphic curves in dimension four. Comment. Math. Helv. 85(2), 347–407 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Yau S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)zbMATHCrossRefGoogle Scholar
  47. 47.
    Ye R.: Gromov’s compactness theorem for pseudo holomorphic curves. Trans. Am. Math. Soc. 342(2), 671–694 (1994)zbMATHMathSciNetGoogle Scholar
  48. 48.
    Zhang, Y.: Collapsing of Calabi–Yau manifolds and special Lagrangian submanifolds. Preprint arXiv:0911.1028v2 [math.AG] (2009)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityStanfordUSA

Personalised recommendations