Skip to main content
Log in

Modular Extensions of Unitary Braided Fusion Categories and 2+1D Topological/SPT Orders with Symmetries

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A finite bosonic or fermionic symmetry can be described uniquely by a symmetric fusion category \({\mathcal{E}}\). In this work, we propose that 2+1D topological/SPT orders with a fixed finite symmetry \({\mathcal{E}}\) are classified, up to \({E_8}\) quantum Hall states, by the unitary modular tensor categories \({\mathcal{C}}\) over \({\mathcal{E}}\) and the modular extensions of each \({\mathcal{C}}\). In the case \({\mathcal{C}=\mathcal{E}}\), we prove that the set \({\mathcal{M}_{ext}(\mathcal{E})}\) of all modular extensions of \({\mathcal{E}}\) has a natural structure of a finite abelian group. We also prove that the set \({\mathcal{M}_{ext}(\mathcal{C})}\) of all modular extensions of \({\mathcal{E}}\), if not empty, is equipped with a natural \({\mathcal{M}_{ext}(\mathcal{C})}\)-action that is free and transitive. Namely, the set \({\mathcal{M}_{ext}(\mathcal{C})}\) is an \({\mathcal{M}_{ext}(\mathcal{E})}\)-torsor. As special cases, we explain in detail how the group \({\mathcal{M}_{ext}(\mathcal{E})}\) recovers the well-known group-cohomology classification of the 2+1D bosonic SPT orders and Kitaev’s 16 fold ways. We also discuss briefly the behavior of the group \({\mathcal{M}_{ext}(\mathcal{E})}\) under the symmetry-breaking processes and its relation to Witt groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barkeshli, M., Bonderson, P., Cheng, M., Wang, Z.: Symmetry, defects, and gauging of topological phases. arXiv:1410.4540

  2. Ben-Zvi, D., Brochier, A., Jordan, D.: Integrating quantum groups over surfaces: quantum character varieties and topological field theory. arXiv:1501.04652

  3. Bockenhauer J., Evans D.E., Kawahigashi Y.: On \({\alpha }\)-induction, chiral projectors and modular invariants for subfactors. Commun. Math. Phys. 208, 429–487 (1999) arXiv:math/9904109

    Article  ADS  MATH  Google Scholar 

  4. Bruillard P., Ng S.-H., Rowell E.C., Wang Z.: Rank-finiteness for modular categories. J. Amer. Math. Soc. 29(3), 857–881 (2016) arXiv:1310.7050

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen X., Gu Z.-C., Liu Z.-X., Wen X.-G.: Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013) arXiv:1106.4772

    Article  ADS  Google Scholar 

  6. Chen X., Gu Z.-C., Wen X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010) arXiv:1004.3835

    Article  ADS  Google Scholar 

  7. Davydov A.: Modular invariants for group-theoretic modular data I. J. Algebra 323, 1321–1348 (2010) arXiv:0908.1044

    Article  MathSciNet  MATH  Google Scholar 

  8. Deligne P.: Catégories tensorielles. Mosc. Math. J. 2(2), 227–248 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Drinfeld, V.G.: unpublished note

  10. Drinfeld, V.G., Gelaki, S., Nikshych, D., Ostrik, V.: Group-Theoretical properties of nilpotent modular categories. arXiv:0704.0195

  11. Drinfeld V.G., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories. I. Sel. Math. 16, 1–119 (2010) arXiv:0906.0620

    Article  MathSciNet  MATH  Google Scholar 

  12. Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013) arXiv:1009.2117

    MathSciNet  MATH  Google Scholar 

  13. Davydov A., Nikshych D., Ostrik V.: On the structure of the Witt group of braided fusion categories. Sel. Math. New Ser. 19, 237–269 (2013) arXiv:1109.5558

    Article  MathSciNet  MATH  Google Scholar 

  14. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Math. Surv. monogr. 205 (2015)

  15. Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. Math. 162, 581–642 (2005) arXiv:math/0203060

    Article  MathSciNet  MATH  Google Scholar 

  16. Etingof P., Nikshych D., Ostrik V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226(1), 176–205 (2010) arXiv:0809.3031

    Article  MathSciNet  MATH  Google Scholar 

  17. Etingof P., Nikshych D., Ostrik V.: Fusion categories and homotopy theory. Quantum Topol. 1, 209–273 (2010) arXiv:0909.3140

    Article  MathSciNet  MATH  Google Scholar 

  18. Etingof, P.I., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4(3), 627–654, 782–783 (2004). arXiv:math/0301027

  19. Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Correspondences of ribbon categories. Adv. Math. 199(1), 192–329 (2006) arXiv:math/0309465

    Article  MathSciNet  MATH  Google Scholar 

  20. Fuchs, J., Ganchev, A., Vecsernyés, P.: Towards a classification of rational Hopf algebras, arXiv:hep-th/9402153

  21. Freed D.S., Moore G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013) arXiv:1208.5055

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Galindo C.: On braided and ribbon unitary fusion categories. Canad. Math. Bull. 57(3), 506–510 (2014) arXiv:1209.2022

    Article  MathSciNet  MATH  Google Scholar 

  23. Galindo, C., Hong, S.-M., Rowell, E.: Generalized and quasi-localizations of braided group representations. Int. Math. Res. Not. IMRN 3, 693–731 (2013) arXiv:1105.5048

  24. Gelaki S., Naidu D., Nikshych D.: Centers of graded fusion categories. Algebra Number Theory 3(8), 959–990 (2009) arXiv:0905.3117

    Article  MathSciNet  MATH  Google Scholar 

  25. Gu Z.-C., Wen X.-G.: Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order. Phys. Rev. B 80, 155131 (2009) arXiv:0903.1069

    Article  ADS  Google Scholar 

  26. Kirillov, Jr., A.: Modular categories and orbiford models II, arXiv:math/0110221

  27. Kirillov Jr., A., Ostrik, V.: On q-analog of Mckay correspondence and ADE classification of \({\widehat{sl_2}}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002). arXiv:math/0101219

  28. Kitaev A.Y.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006) arXiv:cond-mat/0506438

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kitaev, A.Y.: Periodic table for topological insulators and superconductors. In: Proc. L.D.Landau Memorial Conf. Advances in Theor. Physics, June 22–26, Chernogolovka, Russia (2008) arXiv:0901.2686

  30. Kong L.: Anyon condensation and tensor categories. Nucl. Phys. B 886, 436–482 (2014) arXiv:1307.8244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Kong L., Runkel I.: Cardy algebras and sewing constraints, I. Commun. Math. Phys. 292, 871–912 (2009) arXiv:0807.3356

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kong, L., Wen, X.-G.: Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions. arXiv:1405.5858

  33. Kong, L., Wen, X.-G., Zheng, H.: Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers. arXiv:1502.01690

  34. Kong, L., Zheng, H.: The center functor is fully faithful. arXiv:1507.00503

  35. Lan, T., Kong, L., Wen, X.-G.: A theory of 2+1D fermionic topological orders and fermionic/bosonic topological orders with symmetries (2015). arXiv:1507.04673

  36. Lan, T., Kong, L., Wen, X.-G.: Classification of 2+1D topological orders and SPT orders for bosonic and fermionic systems with on-site symmetries. arXiv:1602.05946

  37. Levin, M.: Protected edge modes without symmetry. Phys. Rev. X 3, 021009 (2013). arXiv:1301.7355

  38. Levin M., Gu Z.-C.: Braiding statistics approach to symmetry-protected topological phases. Phys. Rev. B 86, 115109 (2012) arXiv:1202.3120

    Article  ADS  Google Scholar 

  39. Müger M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150(2), 151–201 (2000) arXiv:math/9812040

    Article  MathSciNet  MATH  Google Scholar 

  40. Müger M.: On the structure of modular categories. Proc. Lond. Math. Soc. 87, 291–308 (2003) arXiv:math/0201017

    Article  MathSciNet  MATH  Google Scholar 

  41. Müger M.: Galois extensions of braided tensor categories and braided crossed G-categories. J. Algebra 277(1), 256–281 (2004) arXiv:math/0209093

    Article  MathSciNet  MATH  Google Scholar 

  42. Moore G., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Nikshych, D.: private communication

  44. Neupert T., He H., Keyserlingk C.v., Sierra G., Bernevig B.A.: Boson Condensation in Topologically Ordered Quantum Liquids. Phys. Rev. B. 93, 11103 (2016) arXiv:1601.01320

    Google Scholar 

  45. Van Oystaeyen F., Zhang Y.H.: The Brauer group of a braided monoidal category. J. Algebra 202, 96–128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schnyder A.P., Ryu S., Furusaki A., Ludwig A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008) arXiv:0803.2786

    Article  ADS  Google Scholar 

  47. Tambara D.: A duality for modules over monoidal categories of representations of semisimple Hopf algebras. J. Algebra 241, 515–547 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. de Gruyter, NewYork (1994)

  49. Vecsernyés P.: On the Quantum Symmetry of the Chiral Ising Model. Nucl. Phys. B 415, 557–588 (1994) arXiv:hep-th/9306118

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wen X.-G.: Topological Orders in Rigid States. Int. J. Mod. Phys. B 4, 239 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  51. Wen X.-G.: Topological Orders and Edge Excitations in FQH States. Advances in Physics 44, 405 (1995) arXiv:cond-mat/9506066

    Article  ADS  Google Scholar 

  52. Wen X.-G.: Classifying gauge anomalies through SPT orders and classifying gravitational anomalies through topological orders. Phys. Rev. D 88, 045013 (2015) arXiv:1303.1803

    Article  ADS  Google Scholar 

  53. Yamagami S.: Polygonal presentations of semisimple tensor categories. J. Math. Soc. Jpn. 54, 61–88 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zeng B., Wen X.-G.: Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity. Phys. Rev. B 91, 125121 (2015) arXiv:1406.5090

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Lan.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Kong, L. & Wen, XG. Modular Extensions of Unitary Braided Fusion Categories and 2+1D Topological/SPT Orders with Symmetries. Commun. Math. Phys. 351, 709–739 (2017). https://doi.org/10.1007/s00220-016-2748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2748-y

Navigation