Skip to main content
Log in

Thermalization Time Bounds for Pauli Stabilizer Hamiltonians

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as \({\lambda \geq \mathcal{O}(N^{-1} \exp(-2\beta \, \overline{\epsilon}))}\), where \({\overline{\epsilon}}\) is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N −1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Peter W.S.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Article  MathSciNet  Google Scholar 

  2. Dennis E., Kitaev A., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43(9), 4452–4505 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gottesman D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57(1), 127 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gottesman, D.: Stabilizer Codes and Quantum Error Correction. arXiv preprint arXiv:quant-ph/9705052 (1997)

  5. Yoshida B.: Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes. Ann. Phys. 326(1), 15–95 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Xiao-Gang, W.: Quantum field theory of many-body systems from the origin of sound to an origin of light and electrons. Oxford University Press Inc., New York. ISBN 019853094, 1 (2004)

  7. Nussinov Z., Ortiz G.: Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems. Phys. Rev. B 77, 064302 (2008)

    Article  ADS  Google Scholar 

  8. Nussinov Z., Ortiz G., Cobanera E.: Effective and exact holographies from symmetries and dualities. Ann. Phys. 327(10), 2491–2521 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chesi S., Loss D., Bravyi S., Terhal B.M.: Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes. New J. Phys. 12, 025013 (2010)

    Article  ADS  Google Scholar 

  10. Alicki R., Horodecki M., Horodecki P., Horodecki R.: On thermal stability of topological qubit in kitaev’s 4d model. Open Syst. Inf. Dyn. 17(01), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alicki R., Fannes M., Horodecki M.: On thermalization in kitaev’s 2d model. J. Phys. A: Math. Theor. 42(6), 065303 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Davies, E.B.: Quantum theory of open systems. IMA, London (1976)

  13. Davies E.B.: Generators of dynamical semigroups. J. Funct. Anal. 34(3), 421–432 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bravyi S., Terhal B.: A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes. New J. Phys. 11(4), 043029 (2009)

    Article  ADS  Google Scholar 

  17. Landon-Cardinal O., Poulin D.: Local topological order inhibits thermal stability in 2d. Phys. Rev. Lett. 110(9), 090502 (2013)

    Article  ADS  Google Scholar 

  18. Haah J., Preskill J.: Logical-operator tradeoff for local quantum codes. Phys. Rev. A 86(3), 032308 (2012)

    Article  ADS  Google Scholar 

  19. Brown, B.J., Loss, D., Pachos, J.K., Self, C.N., Wootton, J.R.: Quantum Memories at Finite Temperature. arXiv preprint arXiv:1411.6643 (2014)

  20. Sergey B., Jeongwan H.: Quantum self-correction in the 3d cubic code model. Phys. Rev. Lett. 111(20), 200501 (2013)

    Article  Google Scholar 

  21. Michnicki Kamil P.: 3d topological quantum memory with a power-law energy barrier. Phys. Rev. Lett. 113(13), 130501 (2014)

    Article  ADS  Google Scholar 

  22. Yoshida, B.: Violation of the Arrhenius Law Below the Transition Temperature. arXiv preprint arXiv:1404.0457 (2014)

  23. Chuang I.L., Nielsen M.A.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Alicki R., Lendi K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  25. Breuer H.P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  26. Temme K.: Lower bounds to the spectral gap of Davies generators. J. Math. Phys. 54(12), 122110 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Temme K., Kastoryano M.J., Ruskai M.B., Wolf M.M., Verstraete F.: The \({\chi}\)2-divergence and mixing times of quantum markov processes. J. Math. Phys. 51(12), 122201–122201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Spohn H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Weiss, U.: Quantum Dissipative Systems, vol. 10. World Scientific, Singapore (1999)

  30. Kossakowski A., Frigerio A., Gorini V., Verri M.: Quantum detailed balance and KMS condition. Commun. Math. Phys. 57(2), 97–110 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Sanz M., Pérez-García D., Wolf M.M., Cirac J.I.: A quantum version of wielandt’s inequality. Inf. Theory IEEE Trans. 56(9), 4668–4673 (2010)

    Article  MathSciNet  Google Scholar 

  32. Martinelli F.: Lectures on glauber dynamics for discrete spin models. Lect. Probab. Theory Stat. (Saint-Flour) 1997, 93–191 (1997)

    MATH  Google Scholar 

  33. Martinelli F., Olivieri E.: Approach to equilibrium of glauber dynamics in the one phase region. Commun. Math. Phys. 161(3), 447–486 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Fuchs, C.A., De Van Graaf, J: Cryptographic distinguishability measures for quantum-mechanical states. Inf. Theory IEEE Trans. 45(4), 1216–1227 (1999)

  35. Sinclair A., Jerrum M.: Approximate counting, uniform generation and rapidly mixing markov chains. Inf. Comput. 82(1), 93–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of markov chains. Ann. Appl. Probab. pp. 36–61 (1991)

  37. Fill, J.A.: Eigenvalue bounds on convergence to stationarity for nonreversible markov chains, with an application to the exclusion process. Ann. Appl. Probab. pp. 62–87 (1991)

  38. Gorini V., Kossakowski A., Frigerio A., Verri M.: Quantum detailed balance and kms condition. Commun. Math. Phys. 57, 97 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Diaconis P., Saloff-Coste et al. L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6(3), 695–750 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kastoryano Michael J., Temme Kristan: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54(5), 052202 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Olkiewicz R., Zegarlinski B.: Hypercontractivity in noncommutative Lp spaces. J. Funct. Anal. 161(1), 246–285 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Temme K., Pastawski F., Kastoryano Michael J.: Hypercontractivity of quasi-free quantum semigroups. J. Phys. A: Math. Theor. 47(40), 405303 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Boman Erik G., Hendrickson B.: Support theory for preconditioning. SIAM J. Matrix Anal. Appl. 25(3), 694–717 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen D., Gilbert J.R.: Obtaining bounds on the two norm of a matrix from the splitting lemma. Electron. Trans. Numer. Anal. 21, 28–46 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Bhatia, R.: Matrix Analysis, vol. 169. Springer, New York (1997)

  47. Sinclair A.: Improved bounds for mixing rates of markov chains and multicommodity flow. Combin. Probab. Comput. 1(04), 351–370 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chung Fan, R.K.: Spectral Graph Theory, vol. 92. American Mathematical Soc, New York (1997)

  49. Yoshida B., Chuang Isaac L.: Framework for classifying logical operators in stabilizer codes. Phys. Rev. A 81(5), 052302 (2010)

    Article  ADS  Google Scholar 

  50. Kastoryano Michael J., Brandao Fernando G.S.L.: Quantum gibbs samplers: the commuting case. Commun. Math. Phys. 344(3), 915–957 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Peierls, R.: On ising’s model of ferromagnetism. In: Mathematical Proceedings of the Cambridge Philosophical Society, 32:477–481, 10 (1936)

  52. Stark C., Pollet L., Imamoğlu A., Renner R.: Localization of toric code defects. Phys. Rev. Lett. 107(3), 030504 (2011)

    Article  ADS  Google Scholar 

  53. Wootton James R., Pachos Jiannis K.: Bringing order through disorder: Localization of errors in topological quantum memories. Phys. Rev. Lett. 107(3), 030503 (2011)

    Article  ADS  Google Scholar 

  54. Majewski Adam W., Olkiewicz Robert, Zegarlinski Boguslaw: Dissipative dynamics for quantum spin systems on a lattice. J. Phys. A: Math. Gen. 31(8), 2045 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristan Temme.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temme, K. Thermalization Time Bounds for Pauli Stabilizer Hamiltonians. Commun. Math. Phys. 350, 603–637 (2017). https://doi.org/10.1007/s00220-016-2746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2746-0

Navigation