Skip to main content
Log in

SU(N) Transitions in M-Theory on Calabi–Yau Fourfolds and Background Fluxes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study M-theory on a Calabi–Yau fourfold with a smooth surface S of A N–1 singularities. The resulting three-dimensional theory has a \({\mathcal{N}=2}\) SU(N) gauge theory sector, which we obtain from a twisted dimensional reduction of a seven-dimensional \({\mathcal{N}=1}\) SU(N) gauge theory on the surface S. A variant of the Vafa–Witten equations governs the moduli space of the gauge theory, which—for a trivial SU(N) principal bundle over S—admits a Coulomb and a Higgs branch. In M-theory these two gauge theory branches arise from a resolution and a deformation to smooth Calabi–Yau fourfolds, respectively. We find that the deformed Calabi–Yau fourfold associated to the Higgs branch requires for consistency a non-trivial four-form background flux in M-theory. The flat directions of the flux-induced superpotential are in agreement with the gauge theory prediction for the moduli space of the Higgs branch. We illustrate our findings with explicit examples that realize the Coulomb and Higgs phase transition in Calabi–Yau fourfolds embedded in weighted projective spaces. We generalize and enlarge this class of examples to Calabi–Yau fourfolds embedded in toric varieties with an A N–1 singularity in codimension two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strominger A.: Massless black holes and conifolds in string theory. Nucl. Phys. B 451, 96–108 (1995) arXiv:hep-th/9504090

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Greene B.R., Morrison D.R., Strominger A.: Black hole condensation and the unification of string vacua. Nucl. Phys. B 451, 109–120 (1995) arXiv:hep-th/9504145

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Katz S.H., Morrison D.R., Plesser M.R.: Enhanced gauge symmetry in type II string theory. Nucl. Phys. B 477, 105–140 (1996) arXiv:hep-th/9601108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Klemm A., Mayr P.: Strong coupling singularities and nonAbelian gauge symmetries in N =  2 string theory. Nucl. Phys. B 469, 37–50 (1996) arXiv:hep-th/9601014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Witten E.: Phase transitions in M theory and F theory. Nucl. Phys. B 471, 195–216 (1996) arXiv:hep-th/9603150

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Morrison D.R., Seiberg N.: Extremal transitions and five-dimensional supersymmetric field theories. Nucl. Phys. B 483, 229–247 (1997) arXiv:hep-th/9609070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Katz S.H., Klemm A., Vafa C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173–195 (1997) arXiv:hep-th/9609239

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Intriligator K.A., Morrison D.R., Seiberg N.: Five-dimensional supersymmetric gauge theories and degenerations of Calabi–Yau spaces. Nucl. Phys. B 497, 56–100 (1997) arXiv:hep-th/9702198

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. de Wit B., Van Proeyen A.: Potentials and symmetries of general gauged N =  2 supergravity: Yang–Mills models. Nucl. Phys. B 245, 89 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cremmer, E., Kounnas, C., Van Proeyen, A., Derendinger, J., Ferrara, S., et al.: Vector multiplets coupled to N =  2 supergravity: superHiggs effect, flat potentials and geometric structure. Nucl. Phys. B 250, 385 (1985)

  11. Strominger A.: Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Seiberg N., Witten E.: Electric-magnetic duality, monopole condensation, and confinement in N =  2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994) arXiv:hep-th/9407087

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Seiberg N., Witten E.: Monopoles, duality and chiral symmetry breaking in N =  2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994) arXiv:hep-th/9408099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Cremmer E., Ferrara S., Girardello L., Van Proeyen A.: Yang–Mills theories with local supersymmetry: Lagrangian, transformation laws and superHiggs effect. Nucl. Phys. B 212, 413 (1983)

    Article  ADS  Google Scholar 

  15. Intriligator K.A., Leigh R., Seiberg N.: Exact superpotentials in four-dimensions. Phys. Rev. D 50, 1092–1104 (1994) arXiv:hep-th/9403198

    Article  ADS  MathSciNet  Google Scholar 

  16. Seiberg, N.: The power of holomorphy: exact results in 4-D SUSY field theories (1994). arXiv:hep-th/9408013

  17. Gukov, S., Sparks, J., Tong, D.: Conifold transitions and five-brane condensation in M theory on spin(7) manifolds. Class. Quant. Grav. 20, 665–706 (2003). arXiv:hep-th/0207244

  18. Affleck I., Harvey J.A., Witten E.: Instantons and (super)symmetry breaking in (2+1)-dimensions. Nucl. Phys. B 206, 413 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  19. Aharony O., Hanany A., Intriligator K.A., Seiberg N., Strassler M.J.: Aspects of N =  2 supersymmetric gauge theories in three-dimensions. Nucl. Phys. B 499, 67–99 (1997) arXiv:hep-th/9703110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. de Boer J., Hori K., Oz Y.: Dynamics of N =  2 supersymmetric gauge theories in three-dimensions. Nucl. Phys. B 500, 163–191 (1997) arXiv:hep-th/9703100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Diaconescu D.-E., Gukov S.: Three-dimensional N =  2 gauge theories and degenerations of Calabi–Yau four folds. Nucl. Phys. B 535, 171–196 (1998) arXiv:hep-th/9804059

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kapustin A., Strassler M.J.: On mirror symmetry in three-dimensional Abelian gauge theories. JHEP 04, 021 (1999) arXiv:hep-th/9902033

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dorey N., Tong D.: Mirror symmetry and toric geometry in three-dimensional gauge theories. JHEP 05, 018 (2000) arXiv:hep-th/9911094

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Tong D.: Dynamics of N =  2 supersymmetric Chern–Simons theories. JHEP 07, 019 (2000) arXiv:hep-th/0005186

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Aganagic M., Hori K., Karch A., Tong D.: Mirror symmetry in (2+1)-dimensions and (1+1)-dimensions. JHEP 07, 022 (2001) arXiv:hep-th/0105075

    Article  ADS  MathSciNet  Google Scholar 

  26. Intriligator K., Jockers H., Mayr P., Morrison D.R., Plesser M.R.: Conifold Transitions in M-theory on Calabi–Yau fourfolds with background fluxes. Adv. Theor. Math. Phys. 17, 601– (2013) arXiv:1203.6662 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  27. Intriligator K., Seiberg N.: Aspects of 3d N =  2 Chern–Simons-matter theories. JHEP 07, 079 (2013) arXiv:1305.1633 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Witten E.: String theory dynamics in various dimensions. Nucl. Phys. B. 443, 85–126 (1995) arXiv:hep-th/9503124

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Becker K., Becker M.: M-theory on eight-manifolds. Nucl. Phys. B. 477, 155–167 (1996) arXiv:hep-th/9605053

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sethi S., Vafa C., Witten E.: Constraints on low dimensional string compactifications. Nucl. Phys. B 480, 213–224 (1996) arXiv:hep-th/9606122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Marsano J., Saulina N., Schäfer-Nameki S.: A note on G-fluxes for F-theory model building. JHEP 11, 088 (2010) arXiv:1006.0483 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Marsano J., Saulina N., Schäfer-Nameki S.: G-flux, M5 instantons, and U(1) symmetries in F-theory. Phys. Rev. D 87, 066007 (2013) arXiv:1107.1718 [hep-th]

    Article  ADS  MATH  Google Scholar 

  33. Braun A.P., Collinucci A., Valandro R.: G-flux in F-theory and algebraic cycles. Nucl. Phys. B 856, 129–179 (2012) arXiv:1107.5337 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Marsano J., Schäfer-Nameki S.: Yukawas, G-flux, and spectral covers from resolved Calabi–Yau’s. JHEP 11, 098 (2011) arXiv:1108.1794 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Krause S., Mayrhofer C., Weigand T.: G 4 flux, chiral matter and singularity resolution in F-theory compactifications. Nucl. Phys. B. 858, 1–47 (2012) arXiv:1109.3454 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Grimm T.W., Hayashi H.: F-theory fluxes, chirality and Chern–Simons theories. JHEP 03, 027 (2012) arXiv:1111.1232 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Krause S., Mayrhofer C., Weigand T.: Gauge fluxes in F-theory and type IIB orientifolds. JHEP 08, 119 (2012) arXiv:1202.3138 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  38. Cvetič M., Grimm T.W., Klevers D.: Anomaly cancellation and abelian gauge symmetries in F-theory. JHEP 02, 101 (2013) arXiv:1210.6034 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Braun A.P., Collinucci A., Valandro R.: Hypercharge flux in F-theory and the stable Sen limit. JHEP 07, 121 (2014) arXiv:1402.4096 [hep-th]

    Article  ADS  Google Scholar 

  40. Cvetič M., Klevers D., Peña D.K.M., Oehlmann P.-K., Reuter J.: Three-family particle physics models from global F-theory compactifications. JHEP 08, 087 (2015) arXiv:1503.02068 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. Mavlyutov A.R.: Deformations of Calabi–Yau hypersurfaces arising from deformations of toric varieties. Invent. Math. 157, 621–633 (2004) arXiv:math.AG/0309239

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Mavlyutov A.R.: Embedding of Calabi–Yau deformations into toric varieties. Math. Ann. 333, 45–65 (2005) arXiv:math.AG/0309240

    Article  MathSciNet  MATH  Google Scholar 

  43. Witten E.: On flux quantization in M theory and the effective action. J. Geom. Phys. 22, 1–13 (1997) arXiv:hep-th/9609122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Gukov, S., Vafa, C., Witten, E.: CFT’s from Calabi–Yau four folds. Nucl. Phys. B 584, 69–108 [Erratum: Nucl. Phys. B 608, 477(2001)] (2000). arXiv:hep-th/9906070

  45. Lüdeling, C.: Seven-dimensional super-Yang–Mills theory in N =  1 superfields (2011). arXiv:1102.0285 [hep-th]

  46. Beasley C., Heckman J.J., Vafa C.: GUTs and exceptional branes in F-theory—I. JHEP 01, 058 (2009) arXiv:0802.3391 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Vafa C., Witten E.: A strong coupling test of S duality. Nucl. Phys. B 431, 3–77 (1994) arXiv:hep-th/9408074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Witten E.: Nonperturbative superpotentials in string theory. Nucl. Phys. B 474, 343–360 (1996) arXiv:hep-th/9604030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Jockers, H., Katz, S., Morrison, D.R., Plesser, M.R.: in preparation

  50. Batyrev V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994) arXiv:alg-geom/9402002

    MathSciNet  MATH  Google Scholar 

  51. Batyrev, V., Borisov, L.: On Calabi–Yau complete intersections in toric varieties. Higher-Dimensional Complex Varieties (Trento, 1994), pp. 39–65. de Gruyter, Berlin (1996). arXiv:alg-geom/9412017

  52. Fulton, W.: Introduction to Toric Varieties. Annals of Math. Studies, vol. 131. Princeton University Press, Princeton (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Jockers.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jockers, H., Katz, S., Morrison, D.R. et al. SU(N) Transitions in M-Theory on Calabi–Yau Fourfolds and Background Fluxes. Commun. Math. Phys. 351, 837–871 (2017). https://doi.org/10.1007/s00220-016-2741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2741-5

Navigation