Skip to main content
Log in

Large Deviations for the Two-Dimensional Two-Component Plasma

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a large deviations principle for the two-dimensional two-component plasma in a box. As a consequence, we obtain a variational representation for the free energy, and also show that the macroscopic empirical measure of either positive or negative charges converges to the uniform measure. An appendix, written by Wei Wu, discusses applications to the subcritical complex Gaussian multiplicative chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio L., Gigli N., Savaré G.: Gradient flows - In metric spaces and in the Wasserstein space of probability measures. Birkäuser, Basel (2005)

    MATH  Google Scholar 

  2. Arous G. Ben, Zeitouni O.: Large deviations from the circular law. ESAIM Probab. Stat. 2, 123–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodineau T., Guionnet A.: About the stationary states of vortex systems. Ann. Inst. Henri Poincaré B: Prob. Stat. 35, 205–237 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Deutsch C., Lavaud M.: Equilibrium properties of a two-dimensional coulomb gas. Phys. Rev. A 9(6), 2598–2616 (1974)

    Article  ADS  Google Scholar 

  5. Duplantier B., Sheffield S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dubédat, J.: Dimers and analytic torsion I. (2011). arXiv preprint. arXiv:1110.2808

  7. Daley D.J., Verey-Jones D.: An introduction to the theory of point processes. Springer, New York (1988)

    Google Scholar 

  8. Dembo A., Zeitouni O.: Large deviations techniques and applications. Springer-Verlag, New York (2010)

    Book  MATH  Google Scholar 

  9. Forrester P.J.: Log-gases and random matrices, volume 34 of London Mathematical Society Monographs Series. Princeton University Press, Princeton (2010)

    Google Scholar 

  10. Fröhlich J.: Classical and quantum statistical mechanics in one and two dimensions: two-component Yukawa- and Coulomb systems. Commun. Math. Phys. 47(3), 233–268 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fröhlich J., Ruelle D.: Statistical mechanics of vortices in an inviscid two-dimensional fluid. Commun. Math. Phys. 87(1), 1–36 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fröhlich J., Spencer T.: The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the coulomb gas. Commun. Math. Phys. 81(4), 527–602 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gawedzki, K.: Lectures on conformal field theory. Technical report, SCAN-9703129 (1997)

  14. Gunson J., Panta L.S.: Two-dimensional neutral Coulomb gas. Commun. Math. Phys. 52(3), 295–304 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hiai F., Petz D.: The semicircle law, free random variables and entropy, volume 77 of mathematical surveys and monographs. American Mathematical Society, Providence, RI (2000)

    MATH  Google Scholar 

  16. Jerrard R.L.: Lower bounds for generalized Ginzburg-Landau functionals. SIAM J. Math. Anal. 30(4), 721–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lavaud M., Deutsch C.: New expression for the partition function of a two-dimentional classical plasma. Phys. Lett. A 43(2), 193–194 (1973)

    Article  ADS  Google Scholar 

  18. Lacoin H., Rhodes R., Vargas V.: Complex Gaussian multiplicative chaos. Commun. Math. Phys. 337(2), 569–632 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lieb E., Sokal A.: A general Lee–Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80(2), 153–179 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  20. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of Log and Riesz gases. (2015). arXiv:1502.02970

  21. Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu FirstView 1–69 (2015). doi:10.1017/S1474748015000201

  22. Rassoul-Agha, F., Seppäläinen, T.: A course on large deviation theory with an introduction to Gibbs measures, volume 162 of graduate studies in mathematics. American Mathematical Society, 2015 edition (2009)

  23. Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69, 519–605 (2015)

  24. Šamaj L.: The statistical mechanics of the classical two-dimensional Coulomb gas is exactly solved. J. Phys. A 36(22), 5913–5920 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Sandier E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Serfaty, S.: Coulomb gases and Ginzburg-Landau vortices. Zurich Lect. Adv. Math. Eur. Math. Soc. (2015)

  27. Sari R., Merlini D.: On the \({\nu}\)-dimensional one-component classical plasma: the thermodynamic limit problem revisited. J. Stat. Phys. 14(2), 91–100 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. Spencer, T.: Scaling, the free field and statistical mechanics. In: Jerison, D., Singer, I.M., Stroock, D.W. (eds.) The legacy of Norbert Wiener: a centennial symposium. Proc. Sympos. Pure Math, vol. 60. AMS (1997)

  29. Sandier E., Serfaty S.: From the Ginzburg-Landau model to vortex lattice problems. Commun. Math. Phys. 313, 635–743 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sandier E., Serfaty S.: 1D log gases and the renormalized energy: crystallization at vanishing temperature. Probab. Theory Relat. Fields 162(3-4), 795–846 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sandier E., Serfaty S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43, 2026–2083 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Serfaty.

Additional information

Communicated by A. Borodin

With an appendix by Wei Wu. Courant Institute, New York University, 251 Mercer st, New York, NY 10012, USA & New York University-Shanghai, 1555 Century Ave, Pudong Shanghai, CN 200122, China. weiwu@cims.nyu.edu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblé, T., Serfaty, S. & Zeitouni, O. Large Deviations for the Two-Dimensional Two-Component Plasma. Commun. Math. Phys. 350, 301–360 (2017). https://doi.org/10.1007/s00220-016-2735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2735-3

Navigation