Skip to main content
Log in

Coherence on Fractals Versus Pointwise Convergence for the Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider Carleson’s problem regarding convergence for the Schrödinger equation in dimensions \({d\ge 2}\). We show that if the solution converges almost everywhere with respect to \({\alpha}\)-Hausdorff measure to its initial datum as time tends to zero, for all data \({H^{s}(\mathbb{R}^{d})}\), then \({s\ge \frac{d}{2(d+2)}(d+1-\alpha)}\). This strengthens and generalises results of Bourgain and Dahlberg–Kenig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barceló J.A., Bennett J., Carbery A., Rogers K.M.: On the dimension of diverence sets of dispersive equations. Math. Ann. 349, 599–622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barceló J.A., Bennett J., Carbery A., Ruiz A., Vilela M.C.: Some special solutions of the Schrödinger equation. Indiana Univ. Math. J. 56(4), 1581–1593 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett J., Rogers K.M.: On the size of divergence sets for the Schrödinger equation with radial data. Indiana Univ. Math. J. 61(1), 1–13 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain J.: A remark on Schrödinger operators. Israel J. Math. 77(1–2), 1–16 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Some new estimates on oscillatory integrals. In: Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), pp. 83–112. Princeton Math. Ser., vol. 42, Princeton

  6. Bourgain J.: On the Schrödinger maximal function in higher dimension. Trans. Mat. Inst. Steklova 280, 53–66 (2013)

    Article  MATH  Google Scholar 

  7. Carbery, A.: Radial Fourier multipliers and associated maximal functions. In: Recent progress in Fourier analysis (El Escorial, 1983), pp. 49–56. North-Holland Math. Stud., vol. 11. North-Holland, Amsterdam

  8. Carleson, L.: Some analytic problems related to statistical mechanics. In: Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), pp. 5–45. Lecture Notes in Math., vol. 779. Springer, Berlin

  9. Cho C.-H., Lee S.: Dimension of divergence sets for the pointwise convergence of the Schrödinger equation. J. Math. Anal. Appl. 411(1), 254–260 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowling, M.: Pointwise behavior of solutions to Schrödinger equations. In: Harmonic Analysis (Cortona, 1982), pp. 83–90. Lecture Notes in Math., vol. 992. Springer, Berlin

  11. Dahlberg, B.E.J., Kenig, C.E.: A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Harmonic Analysis (Minneapolis, Minn., 1981), pp. 205–209. Lecture Notes in Math., vol. 908. Springer, Berlin

  12. Falconer K.: Classes of sets with large intersection. Mathematika 32, 191–205 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Falconer K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  14. Gigante G., Soria F.: On the boundedness in H 1/4 of the maximal square function associated with the Schrödinger equation. J. Lond. Math. Soc. (2) 77(1), 51–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ginebre J., Velo G.: Smoothing properties and retarded estimates for some dispersive evolution equations. Commun. Math. Phys. 123, 535–573 (1989)

    Article  ADS  Google Scholar 

  16. Kenig C.E., Ruiz A.: A strong type (2, 2) estimate for a maximal operator associated to the Schrödinger equation. Trans. Am. Math. Soc. 280(1), 239–246 (1983)

    MATH  Google Scholar 

  17. Lee, S.: On pointwise convergence of the solutions to the Schrödinger equations in \({\mathbb{R}^{2}}\). Int. Math. Res. Notices, pp. 1–21 (2006)

  18. Lee S., Rogers K.M.: The Schrödinger equation along curves and the quantum harmonic oscillator. Adv. Math. 229(3), 1359–1379 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lucà, R., Rogers, K.M.: Average decay for the Fourier transform of measures with applications. J. Eur. Math. Soc. (2016, to appear)

  20. Mattila, P.: Fourier Analysis and Hausdorff Dimension, Cambridge Studies in Advanced Mathematics, vol. 150. Cambridge Univ. Press, Cambridge (2015)

  21. Moyua A., Vargas A., Vega L.: Schrödinger maximal function and restriction properties of the Fourier transform. Int. Math. Res. Notices 16, 793–815 (1996)

    Article  MATH  Google Scholar 

  22. Moyua A., Vargas A., Vega L.: Restriction theorems and maximal operators related to oscillatory integrals in \({\mathbb{R}_{3}}\). Duke Math. J. 96(3), 547–574 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. I. Cambridge Studies in Advanced Mathematics, vol. 137. Cambridge University Press, Cambridge (2013)

  24. Rogers K.M.: A local smoothing estimate for the Schrödinger equation. Adv. Math. 219(6), 2105–2122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sjögren P., Sjölin P.: Convergence properties for the time-dependent Schrödinger equation. Ann. Acad. Sci. Fenn. 14(1), 13–25 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sjölin P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43. Princeton Univ. Press, Princeton (1993)

  28. Tao T.: A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13(6), 1359–1384 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao T., Vargas A.: A bilinear approach to cone multipliers II. Applications. Geom. Funct. Anal. 10(1), 185–258 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vega L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102(4), 874–878 (1988)

    MATH  Google Scholar 

  31. Yajima K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110(3), 415–426 (1987)

    Article  ADS  MATH  Google Scholar 

  32. Yajima, K.: On smoothing property of Schrödinger propagators. In: Functional-analytic methods for partial differential equations (Tokyo, 1989), pp. 20–35. Lecture Notes in Math., vol. 1450. Springer, Berlin

  33. Yajima K., Zhang G.: Smoothing property for Schrödinger equations which are superquadratic at infinity. Commun. Math. Phys. 221, 573–590 (2001)

    Article  ADS  MATH  Google Scholar 

  34. Žubrinić D.: Singular sets of Sobolev functions. C. R. Math. Acad. Sci. Paris 334, 539–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Rogers.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucà, R., Rogers, K.M. Coherence on Fractals Versus Pointwise Convergence for the Schrödinger Equation. Commun. Math. Phys. 351, 341–359 (2017). https://doi.org/10.1007/s00220-016-2722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2722-8

Navigation