Communications in Mathematical Physics

, Volume 350, Issue 2, pp 803–844 | Cite as

Sharp Asymptotics for Einstein-\({\lambda}\)-Dust Flows

  • Helmut FriedrichEmail author
Open Access


We consider the Einstein-dust equations with positive cosmological constant \({\lambda}\) on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold \({S}\). It is shown that the set of standard Cauchy data for the Einstein-\({\lambda}\)-dust equations on \({S}\) contains an open (in terms of suitable Sobolev norms) subset of data which develop into solutions that admit at future time-like infinity a space-like conformal boundary \({{\mathcal J}^+}\) that is \({C^{\infty}}\) if the data are of class \({C^{\infty}}\) and of correspondingly lower smoothness otherwise. The class of solutions considered here comprises non-linear perturbations of FLRW solutions as very special cases. It can conveniently be characterized in terms of asymptotic end data induced on \({{\mathcal J}^+}\). These data must only satisfy a linear differential equation. If the energy density is everywhere positive they can be constructed without solving differential equations at all.


  1. 1.
    Bartnik, R., Isenberg, J.: The constraint equations. In: Chruściel, P.T., Friedrich, H. (Eds.) The Einstein equations and the large scale behaviour of gravitational fields. Birkhäuser, Basel (2004)Google Scholar
  2. 2.
    Beyer F.: Investigations of solutions of Einstein’s field equations close to lambda-Taub-NUT. Class. Quantum Gravity 25, 235005 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Friedrich H.: On the hyperbolicity of Einstein’s and other gauge field equations. Commun. Math. Phys. 100, 525–543 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Friedrich H.: Existence and structure of past asymptotically simple solution of Einstein’s field equations with positive cosmological constant. J. Geom. Phys. 3, 101–117 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Friedrich H.: On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587–609 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Friedrich H.: On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Differ. Geometry 34, 275–345 (1991)zbMATHGoogle Scholar
  7. 7.
    Friedrich H.: Einstein equations and conformal structure: existence of anti-de Sitter-type space-times. J. Geom. Phys. 17, 125–184 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Friedrich H.: Evolution equations for gravitating ideal fluid bodies in general relativity. Phys. Rev. D 57, 2317–2322 (1998)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Friedrich H.: Conformal geodesics on vacuum space-times. Commun. Math. Phys. 235, 513–543 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Friedrich H.: Smooth non-zero rest-mass evolution across time-like infinity. Ann. Henri Poincaré 16, 2215–2238 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Friedrich, H.: Geometric asymptotics and beyond. In: Bieri, L., Yau, S.T. (Eds.) Surveys in differential geometry, vol.20. International Press, Boston (2015). arXiv:1411.3854
  12. 12.
    Friedrich, H., Rendall, A.: The Cauchy Problem for the Einstein Equations. In: Schmidt, B. (Ed.) Einstein’s field equations and their physical implications. Springer, Lecture Notes in Physics, Berlin (2000)Google Scholar
  13. 13.
    Hadžić M., Speck J.: The global future stability of the FLRW solutions to the Dust–Einstein system with a positive cosmological constant. J. Hyperb. Differ. Equations 12, 87 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hawking S., Ellis G.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kato T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lübbe C., Valiente Kroon J.A.: A conformal approach to the analysis of the non-linear stability of radiation cosmologies. Ann. Phys. 328, 1 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Penrose R.: Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. R. Soc. Lond. A 284, 159–203 (1965)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Penrose R.: Cycles of time. Vintage, London (2011)zbMATHGoogle Scholar
  19. 19.
    Reula O.: Exponential decay for small non-linear perturbations of expanding flat homogeneous cosmologies. Phys. Rev. D 60, 083507 (1999)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ringström H.: Future stability of the Einstein-non-linear scalar field system. Invent. math. 173, 123–208 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikGolmGermany

Personalised recommendations