Advertisement

Communications in Mathematical Physics

, Volume 350, Issue 2, pp 569–601 | Cite as

Wilson Loop Diagrams and Positroids

  • Susama AgarwalaEmail author
  • Eloi Marin-Amat
Open Access
Article

Abstract

In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang–Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

References

  1. 1.
    Adamo T., Bullimore M., Mason L., Skinner D.: Scattering amplitudes and Wilson loops in twistor space. J. Phys. A 44, 454008 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adamo T., Mason L.: MHV diagrams in twistor space and the twistor action. Phys. Rev. D 86, 065019 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Alday L.F., Maldacena J.M.: Gluon scattering amplitudes at strong coupling. JHEP 0706, 064 (2007)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ardila, F., Rincón, F., Williams, L.: Positively oriented matroids are realizable (2013). arXiv:1310.4159
  5. 5.
    Ardila, F., Rincón, F., Williams, L.: Positroids and non-crossing partitions. Trans. Am. Math. Soc. 368, 337–363 (2016)arXiv:1308.2698v2
  6. 6.
    Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.: Scattering amplitudes and the positive Grassmannian (2012). arXiv:1212.5605
  7. 7.
    Arkani-Hamed, N., Trnka, J.: The Amplituhedron. JHEP 10, 30 (2014)Google Scholar
  8. 8.
    Boels R., Mason L., Skinner D.: From twistor actions to MHV diagrams. Phys. Lett. B 648, 90–96 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boels R., Mason L., Skinner D.: Supersymmetric gauge theories in twistor space. JHEP 0702, 014 (2007)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Britto R., Cachazo F., Feng B., Witten E.: Direct proof of tree-level recursion relation in Yang–Mills theory. Phys. Rev. Lett. 94, 181602 (2005)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cachazo F., Svrcek P., Witten E.: MHV vertices and tree amplitudes in gauge theory. JHEP 0409, 006 (2004)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Feichtner E. M., Sturmfels B.: Matroid polytopes, nested sets and bergman fans. Portugaliae Math. Nova Srie 62(4), 437–468 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hodges A.: Eliminating spurious poles from gauge-theoretic amplitudes. J. High Energy Phys. 2013(5), 1–23 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lam T.: Grassmannians for scattering amplitudes in 4d n = 4 sym and 3d abjm. JHEP 1412, 181 (2014)ADSGoogle Scholar
  15. 15.
    Mason L., Skinner D.: The complete planar S-matrix of N=4 SYM as a Wilson loop in twistor space. JHEP 1012, 018 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Postnikov, A., Speyer, D., Williams, L.: Matching polytopes, toric geometry, and the totally non-negative grassmannian. J. Algebraic Comb. 30(2), 173–191 (2009)Google Scholar
  17. 17.
    Welsh, D.J.A.: Matroid theory. Dover books on mathematics (2010)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Mathematical InstituteOxford UniversityOxfordUK
  2. 2.School of MathematicsUniversity of NottinghamNottinghamUK

Personalised recommendations