Skip to main content
Log in

Drinfeld Center and Representation Theory for Monoidal Categories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by the relation between the Drinfeld double and central property (T) for quantum groups, given a rigid C*-tensor category \({\mathcal{C}}\) and a unitary half-braiding on an ind-object, we construct a *-representation of the fusion algebra of \({\mathcal{C}}\). This allows us to present an alternative approach to recent results of Popa and Vaes, who defined C*-algebras of monoidal categories and introduced property (T) for them. As an example we analyze categories \({\mathcal{C}}\) of Hilbert bimodules over a II1-factor. We show that in this case the Drinfeld center is monoidally equivalent to a category of Hilbert bimodules over another II1-factor obtained by the Longo–Rehren construction. As an application, we obtain an alternative proof of the result of Popa and Vaes stating that property (T) for the category defined by an extremal finite index subfactor \({N \subset M}\) is equivalent to Popa’s property (T) for the corresponding SE-inclusion of II1-factors. In the last part of the paper we study Müger’s notion of weakly monoidally Morita equivalent categories and analyze the behavior of our constructions under the equivalence of the corresponding Drinfeld centers established by Schauenburg. In particular, we prove that property (T) is invariant under weak monoidal Morita equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman-Delaroche C.: On Connes’ property T for von Neumann algebras. Math. Japon. 32(3), 337–355 (1987)

    MATH  MathSciNet  Google Scholar 

  2. Arano, Y.: Unitary spherical representations of Drinfeld doubles. Preprint (2014). Available at arXiv:1410.6238 [math.QA]. To appear in J. Reine Angew. Math. doi:10.1515/crelle-2015-0079

  3. Bischoff, M., Kawahigashi, Y., Longo, R., Rehren, K.-H.: Tensor Categories and Endomorphisms of von Neumann Algebras—with Applications to Quantum Field Theory, Springer Briefs in Mathematical Physics, vol. 3, Springer, Cham (2015). doi:10.1007/978-3-319-14301-9. ISBN 978-3-319-14300-2; 978-3-319-14301-9

  4. Brown, N.P., Ozawa, N.: C*-algebras and Finite-Dimensional Approximations, Graduate Studies in Mathematics, vol. 88. American Mathematical Society, Providence (2008). ISBN 978-0-8218-4381-9; 0-8218-4381-8

  5. Bruguières, A., Natale, S.: Exact sequences of tensor categories. Int. Math. Res. Not. IMRN 24, 5644–5705 (2011). doi:10.1093/imrn/rnq294. arXiv:1006.0569 [math.QA]

  6. Bruguières, A., Virelizier, A.: Hopf monads. Adv. Math. 215(2), 679–733 (2007). doi:10.1016/j.aim.2007.04.011. arXiv:math/0604180 [math.QA]

  7. Bruguières, A., Virelizier, A.: On the center of fusion categories. Pacific J. Math. 264(1), 1–30 (2013). doi:10.2140/pjm.2013.264.1. arXiv:1203.4180 [math.QA]

  8. De Commer, K., Freslon, A., Yamashita, M.: CCAP for universal discrete quantum groups. Commun. Math. Phys. 331(2), 677–701 (2014). doi:10.1007/s00220-014-2052-7. arXiv:1306.6064 [math.OA]

  9. De Commer, K., Yamashita, M.: Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General theory. Theory Appl. Categ. 28(31), 1099–1138 (2013). arXiv:1211.6552 [math.OA]

  10. Deligne, P., Milne, J.S.: Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, vol. 900, pp. 101–228. Springer, Berlin (1982)

  11. Evans D.E., Kawahigashi Y.: On Ocneanu’s theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles. Internat. J. Math. 6(2), 205–228 (1995) doi:10.1142/S0129167X95000468

    Article  MATH  MathSciNet  Google Scholar 

  12. Evans, D.E., Kawahigashi, Y.: Quantum Symmetries on Operator Algebras, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1998). ISBN 0-19-851175-2. Oxford Science Publications

  13. Ghosh, S.K., Jones, C.: Annular representation theory for rigid C*-tensor categories. J. Funct. Anal. 270(4), 1537–1584 (2016). doi:10.1016/j.jfa.2015.08.017. arXiv:1502.06543 [math.OA]

  14. Hiai F., Izumi M.: Amenability and strong amenability for fusion algebras with applications to subfactor theory. Int. J. Math. 9(6), 669–722 (1998) doi:10.1142/S0129167X98000300

    Article  MATH  MathSciNet  Google Scholar 

  15. Izumi M.: The structure of sectors associated with Longo–Rehren inclusions. I. General theory. Commun. Math. Phys. 213(1), 127–179 (2000) doi:10.1007/s002200000234

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Kassel, C.: Quantum Groups, Graduate Texts in Mathematics, vol. 155. Springer, New York (1995). ISBN 0-387-94370-6

  17. Longo R.: A duality for Hopf algebras and for subfactors. I. Commun. Math. Phys. 159(1), 133–150 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys. 7(4), 567–597 (1995). doi:10.1142/S0129055X95000232. arXiv:hep-th/9411077. Workshop on Algebraic Quantum Field Theory and Jones Theory (Berlin, 1994)

  19. Longo, R., Roberts, J.E.: A theory of dimension. K-Theory 11(2), 103–159 (1997). doi:10.1023/A:1007714415067. arXiv:funct-an/9604008 [math.FA]

  20. Lane S. Mac: Categories for the Working Mathematician, Second, Graduate Texts in Mathematics, vol. 5. Springer, New York (1998). ISBN 0-387-98403-8

  21. Masuda T.: Generalization of Longo–Rehren construction to subfactors of infinite depth and amenability of fusion algebras. J. Funct. Anal. 171(1), 53–77 (2000). 10.1006/jfan.1999.3523

    Article  MATH  MathSciNet  Google Scholar 

  22. Müger, M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1–2), 81–157 (2003). doi:10.1016/S0022-4049(02)00247-5. arXiv:math/0111204

  23. Müger, M.: From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180(1–2), 159–219 (2003). doi:10.1016/S0022-4049(02)00248-7. arXiv:math/0111205

  24. Neshveyev, S., Tuset, L.: Compact quantum groups and their representation categories, Cours Spécialisés [Specialized Courses], vol. 20, Société Mathématique de France, Paris (2013). ISBN 978-2-85629-777-3

  25. Neshveyev, S., Yamashita, M.: Poisson boundaries of monoidal categories. preprint (2014). Available at arXiv:1405.6572 [math.OA]

  26. Ocneanu, A.: Quantized Groups, String Algebras and Galois Theory For Algebras, Operator Algebras and Applications, vol. 2, pp. 119–172. Cambridge Univ. Press, Cambridge (1988)

  27. Popa, S.: Correspondences. Preprint (1986). Available at http://www.math.ucla.edu/~popa/popa-correspondences.pdf. INCREST preprint

  28. Popa S.: Symmetric enveloping algebras, amenability and AFD properties for subfactors. Math. Res. Lett. 1(4), 409–425 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Popa S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427–445 (1995) doi:10.1007/BF01241137

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Popa, S.: Some properties of the symmetric enveloping algebra of a subfactor, with applications to amenability and property T. Doc. Math. 4, 665–744 (1999) (electronic)

  31. Popa, S.: On a class of type II1 factors with Betti numbers invariants. Ann. Math. (2) 163(3), 809–899 (2006). doi:10.4007/annals.2006.163.809. arXiv:math/0209130

  32. Popa, S., Vaes, S.: Representation theory for subfactors, \({\lambda}\)-lattices and C*-tensor categories. Commun. Math. Phys. 340(3), 1239–1280 (2015). doi:10.1007/s00220-015-2442-5. arXiv:1412.2732 [math.OA]

  33. Schauenburg P.: The monoidal center construction and bimodules. J. Pure Appl. Algebra 158(2–3), 325–346 (2001) doi:10.1016/S0022-4049(00)00040-2

    Article  MATH  MathSciNet  Google Scholar 

  34. Yamagami S.: A note on Ocneanu’s approach to Jones’ index theory. Int. J. Math. 4(5), 59–871 (1993) doi:10.1142/S0129167X9300039X

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yamashita.

Additional information

Communicated by Y. Kawahigashi

S. Neshveyev: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 307663.

M. Yamashita: Supported by JSPS KAKENHI Grant Number 25800058.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neshveyev, S., Yamashita, M. Drinfeld Center and Representation Theory for Monoidal Categories. Commun. Math. Phys. 345, 385–434 (2016). https://doi.org/10.1007/s00220-016-2642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2642-7

Navigation