Skip to main content
Log in

Emptiness Formation Probability of the Six-Vertex Model and the Sixth Painlevé Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the emptiness formation probability of the six-vertex model with domain wall boundary conditions at its free-fermion point is a \({\tau}\)-function of the sixth Painlevé equation. Using this fact we derive asymptotics of the emptiness formation probability in the thermodynamic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barouch E., McCoy B.M., Wu T.T.: Zero-field susceptibility of the two-dimensional Ising model near T c . Phys. Rev. Lett. 31, 1409–1411 (1973)

    Article  ADS  Google Scholar 

  2. Wu T.T., McCoy B.M., Tracy C.A., Barouch E.: Spin-spin correlation functions for the two-dimensional Ising model. Phys. Rev. B 13, 316–374 (1976)

    Article  ADS  Google Scholar 

  3. Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum fields. Publ. RIMS Kyoto Univ. 15, 201–227 (1979)

  4. Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D 2, 407–448 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Jimbo M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. Res. Inst. Math. Sci. 18(3), 1137–1161 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Its A.R., Novokshenov, V.Y.: The isomonodromic deformation method in the theory of Painlevé equations. Lecture Notes in Mathematics, vol. 1191. Springer, Berlin (1986)

  7. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. (2) 137(2), 295–368 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lieb E.H.: The residual entropy of square ice. Phys. Rev. 162, 162–172 (1967)

    Article  ADS  Google Scholar 

  9. Lieb E.H.: Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett. 18, 692–694 (1967)

    Article  ADS  Google Scholar 

  10. Lieb E.H.: Exact solution of the two-dimensional Slater KDP model of a ferroelectric. Phys. Rev. Lett. 19, 108–110 (1967)

    Article  ADS  Google Scholar 

  11. Sutherland B.: Exact solution of a two-dimensional model for hydrogen-bonded crystals. Phys. Rev. Lett. 19, 103–104 (1967)

    Article  ADS  Google Scholar 

  12. Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  13. Korepin V.E.: Calculations of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–418 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Izergin A.G.: Partition function of the six-vertex model in the finite volume. Sov. Phys. Dokl. 32, 878–879 (1987)

    ADS  MATH  MathSciNet  Google Scholar 

  15. Izergin A.G., Coker D.A., Korepin V.E.: Determinant formula for the six-vertex model. J. Phys. A 25, 4315–4334 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Korepin, V.E., Zinn-Justin, P.: Thermodynamic limit of the six-vertex model with domain wall boundary conditions. J. Phys. A 33, 7053–7066 (2000). arXiv:cond-mat/0004250

  17. Zinn-Justin, P.: Six-vertex model with domain wall boundary conditions and one-matrix model. Phys. Rev. E 62, 3411–3418 (2000). arXiv:math-ph/0005008

  18. Fokas A.S., Its A.R., Kitaev A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 183, 395–430 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Bogoliubov, N.M., Kitaev, A.V., Zvonarev, M.B.: Boundary polarization in the six-vertex model. Phys. Rev. E 65, 026126 (2002). arXiv:cond-mat/0107146

  20. Bleher, P., Fokin, V.: Exact solution of the six-vertex model with domain wall boundary conditions. Disordered phase. Commun. Math. Phys. 268, 223–284 (2006). arXiv:math-ph/0510033

  21. Bleher, P., Liechty, K.: Exact solution of the six-vertex model with domain wall boundary conditions. Ferroelectric phase. Commun. Math. Phys. 286, 777–801 (2009). arXiv:0711.4091

  22. Bleher, P., Liechty, K.: Exact solution of the six-vertex model with domain wall boundary conditions. Critical line between ferroelectric and disordered phases. J. Stat. Phys. 134, 463–485 (2009). arXiv:0802.0690

  23. Bleher, P., Liechty, K.: Exact solution of the six-vertex model with domain wall boundary conditions. Antiferroelectric phase. Commun. Pure App. Math. 63, 779–829 (2010). arXiv:0904.3088

  24. Bleher, P., Bothner, T.: Exact solution of the six-vertex model with domain wall boundary conditions. Critical line between disordered and antiferroelectric phases. Random Matrices Theory Appl. 1, 1250012 (43 pp.) (2012). arXiv:1208.6276

  25. Colomo, F., Pronko, A.G.: Emptiness formation probability in the domain-wall six-vertex model. Nucl. Phys. B 798, 340–362 (2008). arXiv:0712.1524

  26. Colomo, F., Pronko, A.G.: The arctic curve of the domain-wall six-vertex model. J. Stat. Phys. 138, 662–700 (2010). arXiv:0907.1264

  27. Colomo, F., Pronko, A.G.: The limit shape of large alternating-sign matrices. SIAM J. Discrete Math. 24, 1558–1571 (2010). arXiv:0803.2697

  28. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings. J. Algebraic Combin. 1, 111–132; 219–234 (1992)

  29. Cohn, H., Elkies, N., Propp, J.: Local statistics for random domino tilings of the Aztec diamond. Duke Math. J. 85, 117–166 (1996). arXiv:math/0008243

  30. Colomo, F., Pronko, A.G. Third-order phase transition in random tilings. Phys. Rev. E 88, 042125 (2013). arXiv:1306.6207

  31. Pronko A.G.: On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions. J. Math. Sci. (N. Y.) 192, 101–116 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Szabo, R.J., Tierz, M.: Two-dimensional Yang-Mills theory, Painlevé equations and the six-vertex model. J. Phys. A 45, 085401 (2012). arXiv:1102.3640

  33. Deift P.A., Its A.R., Zhou X.: A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. 146, 149–235 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000). arXiv:math/9903134

  35. Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109, 1–65 (2001). arXiv:math/9905083

  36. Forrester, P.J., Witte, N.S.: Application of the \({\tau}\)-function theory of Painlevé equations to random matrices: \({P_\mathrm{VI}}\), the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, 29–114 (2004). arXiv:math-ph/0204008

  37. Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A.: Differential equations for quantum correlation functions. Int. J. Mod. Phys. B 4, 1003–1037 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008)

  39. Pérez-García, D., Tierz, M.: Mapping between the Heisenberg XX spin chain and low-energy QCD. Phys. Rev. X 4, 021050 (2014). arXiv:1305.3877

  40. Stéphan, J.-M.: Emptiness formation probability, Toeplitz determinants, and conformal field theory. J. Stat. Mech. Theory Exp. 2014, P05010 (2014). arXiv:1303.5499

  41. Jain, S., Minwalla, S., Sharma, T., Takimi, T., Wadia, S.R., Yokoyama, S.: Phases of large N vector Chern–Simons theories on \({S^2 \times S^1}\). JHEP 2013(9), 009 (2013). arXiv:1301.6169

  42. Majumdar, S.N., Schehr, G.: Top eigenvalue of a random matrix: large deviations and third order phase transition. J. Stat. Mech. Theory Exp. 2014(1), P01012 (2014). arXiv:1311.0580

  43. Korepin V.E., Bogoliubov N.M., Izergin A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  44. Colomo, F., Pronko A.G.: The Arctic Circle revisited. Contemp. Math. 458, 361–376 (2008). arXiv:0704.0362

  45. Baik J. Riemann–Hilbert problems for last passage percolations. Contemp. Math. 326, 1–21 (2003). arXiv:math/0107079

  46. Okamoto K.: Studies on the Painlevé equations. I. Sixth Painlevé Equation \({P_\mathrm{VI}}\). Ann. Mat. Pura Appl. 146, 337–381 (1987)

  47. Ince E.L.: Ordinary Differential Equations. Dover Publications, New York (1944)

    MATH  Google Scholar 

  48. Umemura H.: Painlevé equations and classical functions. Sugaku Expositions 11(1), 77–100 (1998)

    MathSciNet  Google Scholar 

  49. Umemura, H.: Galois theory and Painlevé equations. Théories asymptotiques et équations de Painlevé, Sémin. Congr., vol. 14. Soc. Math. France, Paris, pp. 299–339 (2006)

  50. Mazzocco, M.: Rational solutions of the Painlevé VI equation. J. Phys. A 34(11), 2281–2294 (2001). arXiv:nlin/0007036

  51. Jockush, W., Propp, J., Shor, P.: Random domino tilings and the arctic circle theorem. arXiv:math/9801068

  52. Colomo, F., Pronko, A.G.: Thermodynamics of the six-vertex model in an L-shaped domain. Commun. Math. Phys. 339, 699–728 (2015). arXiv:1501.03135

  53. Koekoek, R., Swarttouw, R.F., Lesky, P.A.: Hypergeometric orthogonal polynomials and their q-analogues. Springer Monographs in Mathematics. Springer, Berlin, (2010)

  54. Barnes E.W.: The theory of the G-function. Q. J. Pure Appl. Math. 31, 264 (1900)

    MATH  Google Scholar 

  55. Wasow W.: Asymptotic expansions for ordinary differential equations. Dover Publications, New York (1987)

    MATH  Google Scholar 

  56. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. vol. 1. McGraw-Hill Book Company, Inc., New York-Toronto-London (1953) (based, in part, on notes left by Harry Bateman)

  57. Kitaev A.V.: Caustics in 1 + 1 integrable systems. J. Math. Phys. 35(6), 2934–2954 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Kitaev, A.V.: An isomonodromy cluster of two regular singularities. J. Phys. A 39(39), 12033–12072 (2006). arXiv:math/0606562

  59. Hastings S.P., McLeod J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73(1), 31–51 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  60. Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Fedoryuk, M.V.: The Saddle-Point Method. Nauka, Moskow (1977) (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Pronko.

Additional information

Communicated by H. Spohn

This work is partially supported by the Russian Foundation for Basic Research, Grant No. 13-01-00336.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitaev, A.V., Pronko, A.G. Emptiness Formation Probability of the Six-Vertex Model and the Sixth Painlevé Equation. Commun. Math. Phys. 345, 305–354 (2016). https://doi.org/10.1007/s00220-016-2636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2636-5

Keywords

Navigation