Skip to main content
Log in

The Eigenvector Moment Flow and Local Quantum Unique Ergodicity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that the distribution of eigenvectors of generalized Wigner matrices is universal both in the bulk and at the edge. This includes a probabilistic version of local quantum unique ergodicity and asymptotic normality of the eigenvector entries. The proof relies on analyzing the eigenvector flow under the Dyson Brownian motion. The key new ideas are: (1) the introduction of the eigenvector moment flow, a multi-particle random walk in a random environment, (2) an effective estimate on the regularity of this flow based on maximum principle and (3) optimal finite speed of propagation holds for the eigenvector moment flow with very high probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allez R., Guionnet A.: A diffusive matrix model for invariant β-ensembles. Electron. J. Probab. 62, 1–30 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Anantharaman N.: Entropy and the localization of eigenfunctions. Ann. Math. (2) 168(2), 435–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anantharaman N., Le Masson E.: Quantum ergodicity on large regular graphs. DuKe Math. J. 164(4), 723–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson G.W., Guionnet A., Zeitouni O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics. vol. 118. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  5. Bloemendal A., Erdős L., Knowles A., Yau H.-T., Yin J.: Isotropic local laws for sample covariance and generalized Wigner matrices. Electron. J. Probab. 19(33), 1–53 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bohigas O., Giannoni M.-J., Schmit C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52(1), 1–4 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bourgade P., Erdős L., Yau H.-T.: Edge universality for generalized Wigner matrices. Commun. Math. Phys. 332, 261–353 (2014)

    Article  ADS  MATH  Google Scholar 

  8. Brooks S., Lindenstrauss E.: Non-localization of eigenfunctions on large regular graphs. Israel J. Math. 193(1), 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bru M.-F.: Diffusions of perturbed principal component analysis. J. Multivar. Anal. 29(1), 127–136 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli L., Chan C.H., Vasseur A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colin de Verdière, Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102(3), 497–502 (1985) (French, with English summary)

  12. Erdős L., Péché S., Ramírez J.A., Schlein B., Yau H.-T.: Bulk universality for Wigner matrices. Commun. Pure Appl. Math. 63(7), 895– (2010)

    MathSciNet  MATH  Google Scholar 

  13. Erdős L., Schlein B., Yau H.-T.: Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287, 641–655 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Erdős L., Schlein B., Yau H.-T.: Universality of random matrices and local relaxation flow. Invent. Math. 185(1), 75–119 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Erdős, L., Yau, H.-T.: Gap universality of generalized Wigner and beta ensembles (2012) (preprint). arXiv:1211.3786

  16. Erdős L., Yau H.-T.: Universality of local spectral statistics of random matrices. Bull. Am. Math. Soc. (N.S.) 49(3), 377–414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdős L., Yau H.-T., Yin J.: Universality for generalized Wigner matrices with Bernoulli distribution. J. Comb. 2(1), 15–81 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Erdős L., Yau H.-T., Yin J.: Bulk universality for generalized Wigner matrices. Probab. Theory Related Fields 154(1-2), 41–407 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Erdős L., Yau H.-T., Yin J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holowinsky R.: Sieving for mass equidistribution. Ann. Math. (2) 172(2), 1499–1516 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Holowinsky R., Soundararajan K.: Mass equidistribution for Hecke eigenforms. Ann. Math. (2) 172(2), 1517–1528 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Knowles, A., Yin, J.: Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields (2011) (to appear)

  23. Knowles, A., Yin, J.: The isotropic semicircle law and deformation of Wigner matrices. Commun. Pure Appl. Math. (2012) (to appear)

  24. Kottos, T., Smilansky, U.: Quantum chaos on graphs. Phys. Rev. Lett. 79 (1997)

  25. Le Masson E.: Pseudo-differential calculus on homogeneous trees. Ann. Henri Poincaré 15, 1697–1732 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. (2) 163(1), 165–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. McKean H. P.: Stochastic Integrals. Academic Press, New York (1969)

    MATH  Google Scholar 

  28. Norris J.R., Rogers L.C.G., David W.: Brownian motions of ellipsoids. Trans. Am. Math. Soc. 294(2), 757–765 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rogers L.C.G., Shi Z.: Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95(4), 555–570 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rudnick Z., Sarnak P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Shnirel’man A.I.: Uspekhi Mat. Nauk 29(6), 181–182 (1974)

    MathSciNet  Google Scholar 

  32. Soshnikov A.: Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys. 207(3), 697–733 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Tao T., Vu V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298(2), 549–572 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1) (2011)

  35. Tao, T., Vu, V.: Random matrices: universal properties of eigenvectors. Random Matrices Theory Appl. 1(1) (2012)

  36. Zelditch S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bourgade.

Additional information

Communicated by M. Salmhofer

The work of P. Bourgade is partially supported by the NSF Grant DMS1208859. The work of H.-T. Yau is partially supported by the NSF Grant DMS1307444 and the Simons Investigator Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgade, P., Yau, HT. The Eigenvector Moment Flow and Local Quantum Unique Ergodicity. Commun. Math. Phys. 350, 231–278 (2017). https://doi.org/10.1007/s00220-016-2627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2627-6

Keywords

Navigation