Skip to main content
Log in

Representations of Canonical Commutation Relations Describing Infinite Coherent States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the infinite volume limit of quantized photon fields in multimode coherent states. We show that for states containing a continuum of coherent modes, it is mathematically and physically natural to consider their phases to be random and identically distributed. The infinite volume states give rise to Hilbert space representations of the canonical commutation relations which we construct concretely. In the case of random phases, the representations are random as well and can be expressed with the help of Itô stochastic integrals. We analyze the dynamics of the infinite state alone and the open system dynamics of small systems coupled to it. We show that under the free field dynamics, initial phase distributions are driven to the uniform distribution. We demonstrate that coherences in small quantum systems, interacting with the infinite coherent state, exhibit Gaussian time decay. The decoherence is qualitatively faster than the one caused by infinite thermal states, which is known to be exponentially rapid only. This emphasizes the classical character of coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H., Woods E.: Representations of canonical commutation relations describing a non-relativistic infinite free Bose gas. J. Math. Phys. 4, 637–662 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Araki H., Wyss W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136–159 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Billingsley P.: Probability and Measure. Wiley, New York (1995)

    MATH  Google Scholar 

  4. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 1 and 2. Springer, New York (1987)

    Book  MATH  Google Scholar 

  5. Breuer H.-P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  6. Coish W.A., Fischer J., Loss D.: Exponential decay in a spin bath. Phys. Rev. B 77, 125329 (2000)

    Article  ADS  Google Scholar 

  7. de Sousa R., Das Sarma S.: Theory of nuclear-induced spectral diffusion: spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003)

    Article  ADS  Google Scholar 

  8. Fröhlich J., Merkli M.: Thermal Ionization. Math. Phys. Anal. Geom. 7(3), 239–287 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujii, K.: Introduction to Coherent States and Quantum Information Theory. arXiv:quant-ph/0112090v2

  10. Fujii K., Oike H.: Basic properties of coherent-squeezed states revisited. Int. J. Geom. Methods Mod. Phys. 11(5), 1450051, 15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer Series in Synergetics, 3rd edn (2004)

  12. Glauber R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  13. Glauber R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  14. Grosshans F., Van Assche G., Wenger J., Brouri R., Cerg N.J., Ph. Grangier: Quantum key distribution using gaussian-modulated coherent states. Lett. Nat. Nat. 421, 238–241 (2003)

    Article  Google Scholar 

  15. Hirvensalo M.: Quantum Computing. Springer Verlag (Natural computing series), New York (1998)

    MATH  Google Scholar 

  16. Joos E., Zeh H.D., Kiefer C., Giulini D., Kupsch J., I.O. Stamatescu: Decoherence and the Appearence of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)

    Book  Google Scholar 

  17. Kaye P., Laflamme R., Mosca M.: An introduction to Quantum Computing. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  18. Klauder J.R., Skagerstam B.-S.: Coherent States, Applications in Physics and Mathematical Physics. World Scientific, Singapore (1985)

    Book  MATH  Google Scholar 

  19. Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  20. Martin Ph.A., Rothen F.: Many-Body Problems and Quantum Field Theory. Springer Texts and Monographs in Physics. Springer, New York (2004)

    Book  Google Scholar 

  21. Mosheni M., Omar Y., Engel G.S., Plenio M.B.: Quantum Effects in Biology. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  22. Merkli, M., Berman, G.P., Sayre, R.T., Gnanakaran, S., Könenberg, M., Nesterov, A.I., Song, H.: Dynamics of a Chlorophyll Dimer in Collective and Local Thermal Environments. J.Math. Chem. 54(4), 866–917 (2016)

  23. Merkli M., Berman G.P., Sayre R.: Electron transfer reactions: generalized Spin-Boson approach. J. Math. Chem. 51(3), 890–913 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Merkli M., Sigal I.M., Berman G.P.: Resonance theory of decoherence and thermalization. Ann. Phys. 323, 373–412 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Merkli, M.: The ideal quantum gas. In: Attal, S., Joye, A., Pillet, C.-A (eds.) Lecture Notes in Mathematics 1880. Springer, New York (2006)

  26. Moncrief V.: Coherent states and quantum nonperturbing measurements. Ann. Phys. 114, 1–2 (1978)

    Article  ADS  Google Scholar 

  27. Myatt C.J., King B.E., Turchette Q.A., Sackett C.A., D. Kielpinski, Itano W.M., Monroe C., Wineland D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)

    Article  ADS  Google Scholar 

  28. Nakahara M., Ohmi T.: Quantum Computing, from Linear Algebra to Physical Realizations. CRC Press, Boca Raton (2008)

    Book  MATH  Google Scholar 

  29. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Øksendal, B.: Stochastic Differential Equations, 6th edn. Universitext. Springer, New York (2003)

  31. Poyatos J.F., Cirac J.I., Zoller P.: Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 23 (1996)

    Article  Google Scholar 

  32. Palma M.G., Suominen K.-A., Ekert A.: Quantum computers and dissipation. Proc. R. Soc. Lond. Ser. A 452, 567–584 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Schrödinger E.: Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926)

    Article  ADS  MATH  Google Scholar 

  34. Schlosshauer M.: Decoherence and the Quantum-to-Classical Transition. The Frontiers Collection. Springer, New York (2007)

    Google Scholar 

  35. Xu D., Schulten K.: Coupling of protein motion to electron transfer in a photosynthetic reaction center: investigating the low temperature behavior in the framework of the spin boson model. Chem. Phys. 182, 91–117 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Merkli.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joye, A., Merkli, M. Representations of Canonical Commutation Relations Describing Infinite Coherent States. Commun. Math. Phys. 347, 421–448 (2016). https://doi.org/10.1007/s00220-016-2611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2611-1

Keywords

Navigation