Skip to main content
Log in

Invariant Connections in Loop Quantum Gravity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a group \({G}\), and an abelian \({C^*}\)-algebra \({\mathfrak{A}}\), the antihomomorphisms \({\Theta\colon G\rightarrow {\mathrm{Aut}}(\mathfrak{A})}\) are in one-to-one with those left actions \({\Phi\colon G\times {\mathrm{Spec}}(\mathfrak{A})\rightarrow {\mathrm{Spec}}(\mathfrak{A})}\) whose translation maps \({\Phi_g}\) are continuous; whereby continuities of \({\Theta}\) and \({\Phi}\) turn out to be equivalent if \({\mathfrak{A}}\) is unital. In particular, a left action \({\phi\colon G \times X\rightarrow X}\) can be uniquely extended to the spectrum of a \({C^*}\)-subalgebra \({\mathfrak{A}}\) of the bounded functions on \({X}\) if \({\phi_g^*(\mathfrak{A})\subseteq \mathfrak{A}}\) holds for each \({g\in G}\). In the present paper, we apply this to the framework of loop quantum gravity. We show that, on the level of the configuration spaces, quantization and reduction in general do not commute, i.e., that the symmetry-reduced quantum configuration space is (strictly) larger than the quantized configuration space of the reduced classical theory. Here, the quantum-reduced space has the advantage to be completely characterized by a simple algebraic relation, whereby the quantized reduced classical space is usually hard to compute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar A., Bojowald M., Lewandowski J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233–268 (2003) arXiv:gr-qc/0304074v4

    Article  MathSciNet  Google Scholar 

  2. Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy C * algebras. In: Baez, J.C. (ed.) Knots and Quantum Gravity (Riverside, CA, 1993). Oxford Lecture Series in Mathematics and its Applications, vol. 1, pp. 21–61. Oxford University Press, Oxford (1994). arXiv:gr-qc/9311010v2

  3. Ashtekar A., Lewandowski J.: Projective techniques and functional integration. J. Math. Phys. 36(5), 2170–2191 (1995) arXiv:gr-qc/9411046v1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bröcker, Th., Dieck, T.T.: Representations of Compact Lie Groups. Springer, Berlin (1985)

  5. Brunnemann J., Fleischhack Ch.: On the configuration spaces of homogeneous loop quantum cosmology and loop quantum gravity. Math. Phys. Anal. Geom. 15, 299–315 (2012) arXiv:0709.1621v2 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  6. Engle, J.: Quantum field theory and its symmetry reduction. Class. Quantum Grav. 23 2861 (2006). arXiv:0511107v3 [gr-qc]

  7. Engle, J.: Piecewise linear loop quantum gravity. Class. Quantum Grav. 27, 035003 (2010). arXiv:gr-qc/0511107v3

  8. Engle J.: Embedding loop quantum cosmology without piecewise linearity. Class. Quantum Grav. 30, 085001 (2013) arXiv:1301.6210v1 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fleischhack, Ch.: Loop quantization and symmetry: configuration spaces. arXiv:1010.0449 [math-ph]

  10. Fleischhack Ch.: Parallel transports in webs. Math. Nachr. 263–264, 83–102 (2004) arXiv:math-ph/0304001v2

    Article  MathSciNet  MATH  Google Scholar 

  11. Hanusch M.: A characterization of invariant connections. SIGMA 10(025), 25 (2014) arXiv:1310.0318v3 [math-ph]

    MathSciNet  MATH  Google Scholar 

  12. Hanusch M.: Projective structures in loop quantum cosmology. J. Math. Anal. Appl. 428, 1005–1034 (2015) arXiv:1309.0713v2 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  13. Hanusch M.: Uniqueness of measures in loop quantum cosmology. J. Math. Phys. 56, 092303 (2015) arXiv:1502.07789v2 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hanusch, M.: Invariant connections and symmetry reduction in loop quantum gravity. Dissertation, University of Paderborn (2014). http://nbn-resolving.de/urn:nbn:de:hbz:466:2-1527. arXiv:1601.05531 [math-ph]

  15. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley Intersciece, New York (1996)

  16. Koslowski, T.: Reduction of a quantum theory. arXiv:0612138v1 [gr-qc]

  17. Raeburn, I., Williams, D.P.: Morita equivalence and continuous-trace C *-algebras. In: Mathematical Surveys and Monographs, vol. 60, xiv, p. 327. American Mathematical Society (AMS), Providence (1989)

  18. Rendall, A.D.: Comment on a paper of Ashtekar and Isham. Class. Quantum Grav. 10, 605–608 (1993).

  19. Rudin, W.: Fourier Analysis on Groups. Interscience, New York (1962)

  20. Wang, H.C.: On invariant connections over a principal fibre bundle. Nagoya Math. J. 13, 1–19 (1958).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Hanusch.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanusch, M. Invariant Connections in Loop Quantum Gravity. Commun. Math. Phys. 343, 1–38 (2016). https://doi.org/10.1007/s00220-016-2592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2592-0

Keywords

Navigation