Skip to main content
Log in

Stable Self-Similar Blow-Up Dynamics for Slightly \({L^2}\)-Supercritical Generalized KDV Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider the slightly \({L^2}\)-supercritical gKdV equations \({\partial_t u+(u_{xx}+u|u|^{p-1})_x=0}\), with the nonlinearity \({5 < p < 5+\varepsilon}\) and \({0 < \varepsilon\ll 1}\). We will prove the existence and stability of a blow-up dynamics with self-similar blow-up rate in the energy space \({H^1}\) and give a specific description of the formation of the singularity near the blow-up time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain J., Wang W.: Construction of blowup solution for the nonlinear Schrodinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(4), 197–215 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Côte R.: Construction of solutions to \({{L}^2}\)-critical KdV equation with a given asymptotic behavior. Duke Math. J. 138(3), 487–531 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Côte R., Martel Y., Merle F.: Construction of multi-soliton solutions for the \({{L}^ 2}\)-supercritical gKdV and NLS equations. Revista Matematica Iberoamericana 27(1), 273–302 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dix D.B., McKinney W.R.: Numerical computations of self-similar blow-up solutions of the generalized Korteweg-de Vries equation. Differ. Integr Equations 11(5), 679–723 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Foschi D.: Inhomogeneous Strichartz estimates. J. Hyperb. Differ. Equations 2(01), 1–24 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Kato T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Stud. Appl. Math. 8, 93–128 (1983)

    MathSciNet  Google Scholar 

  7. Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kenig C.E., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Koch H.: Self-similar solutions to super-critical gKdV. Nonlinearity 28(3), 545–575 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Koch H., Tataru D., Vişan M.: Dispersive equations and nonlinear waves. Springer, New York (2014)

    Book  MATH  Google Scholar 

  11. Martel Y., Merle F.: A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. de Mathématiques Pures et Appliquées 79(4), 339–425 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Martel Y., Merle F.: Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. GAFA 11(1), 74–123 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Martel Y., Merle F.: Blow up in finite time and dynamics of blow up solutions for the \({{L}^2}\)–critical generalized KdV equation. J. Am. Math. Soc. 15(3), 617–664 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Martel Y., Merle F.: Nonexistence of blow-up solution with minimal \({{L}^2}\)-mass for the critical gKdV equation. Duke Math. J. 115(2), 385–408 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Martel Y., Merle F.: Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. Math. 155(1), 235–280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martel Y., Merle F.: Description of two soliton collision for the quartic gKdV equation. Ann. Math. 174(2), 757–857 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Martel Y., Merle F., Raphaël P.: Blow up for the critical generalized Korteweg-de Vries equation I: Dynamics near the soliton. Acta Math. 212(1), 59–140 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical gKdV equation II: minimal mass blow up, to appear in JEMS (2015)

  19. Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical gKdV equation III: exotic regimes, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2015)

  20. Merle F.: Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Am. Math. Soc. 14(3), 555–578 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Merle F., Raphael P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrodinger equation. Ann. Math. 161(1), 157 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Merle F., Raphael P.: Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Commun. Math. Phys. 253(3), 675–704 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Merle F., Raphaël P., Szeftel J.: Stable self-similar blow-up dynamics for slightly \({{L}^2}\) super-critical NLS equations. Geom. Funct. Anal. 20(4), 1028–1071 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Merle F., Raphaël P., Szeftel J.: On collapsing ring blow up solutions to the mass supercritical NLS. Duke Math. J. 168(2), 369–431 (2014)

    Article  MATH  Google Scholar 

  25. Raphaël P.: Existence and stability of a solution blowing up on a sphere for an \({{L}^2}\)-supercritical nonlinear Schrödinger equation. Duke Math. J. 134(2), 199–258 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Raphaël P., Szeftel J.: Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation. Commun. Math. Phys. 290(3), 973–996 (2009)

    Article  ADS  MATH  Google Scholar 

  27. Raphaël P., Szeftel J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Am. Math. Soc. 24(2), 471–546 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Strunk, N.: Well-posedness for the supercritical gKdV equation. Commun. Pure Appl. Anal. 13(2) (2012)

  29. Sulem C., Sulem P.L.: The nonlinear Schrödinger equation: self-focusing and wave collapse vol. 139. Springer Science & Business Media, New York (1999)

    MATH  Google Scholar 

  30. Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1983)

    Article  ADS  MATH  Google Scholar 

  31. Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  32. Weinstein M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39(1), 51–67 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Lan.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Y. Stable Self-Similar Blow-Up Dynamics for Slightly \({L^2}\)-Supercritical Generalized KDV Equations. Commun. Math. Phys. 345, 223–269 (2016). https://doi.org/10.1007/s00220-016-2589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2589-8

Keywords

Navigation