Skip to main content
Log in

On the Stability of Self-Similar Solutions to Nonlinear Wave Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an explicit self-similar solution to an energy-supercritical Yang-Mills equation and prove its mode stability. Based on earlier work by one of the authors, we obtain a fully rigorous proof of the nonlinear stability of the self-similar blowup profile. This is a large-data result for a supercritical wave equation. Our method is broadly applicable and provides a general approach to stability problems related to self-similar solutions of nonlinear wave equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Actor A.: Classical solutions of SU(2) Yang-Mills theories. Rev. Mod. Phys. 51, 461–525 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bizoń P., Chmaj T.: Convergence towards a self-similar solution for a nonlinear wave equation: a case study. Phys. Rev. D 72(4), 045013 (2005)

    Article  ADS  Google Scholar 

  3. Bizoń P., Ovchinnikov NY., Sigal I.M.: Collapse of an instanton. Nonlinearity 17(4), 1179–1191 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bizoń, P., Tabor, Z.: On blowup of Yang-Mills fields. Phys. Rev. D(3), 64(12), 121701, 4, (2001)

  5. Bizoń P.: Formation of singularities in Yang-Mills equations. Acta Phys. Polon. B 33(7), 1893–1922 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Buslaev V.I., Buslaeva S.F.: Poincaré’s theorem on difference equations. Mat. Zametki 78(6), 943–947 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cazenave T., Shatah J., Tahvildar-Zadeh A.S.: Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields. Ann. Inst. H. Poincaré Phys. Théor. 68(3), 315–349 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Costin O., Huang M., Schlag W.: On the spectral properties of L ± in three dimensions. Nonlinearity 25(1), 125–164 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Costin O., Huang M., Tanveer S.: Proof of the Dubrovin conjecture and analysis of the tritronquée solutions of P I . Duke Math. J. 163(4), 665–704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Costin, O., Donninger, R., Xia, X.: A proof for the mode stability of a self-similar wave map. Preprint arXiv: arXiv:1411.2947, (2014)

  11. Côte R., Kenig Carlos E., Merle F.: Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system. Comm. Math. Phys. 284(1), 203–225 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Donninger R.: On stable self–similar blow up for equivariant wave maps. Comm. Pure Appl. Math. 64(8), 1029–1164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donninger R.: Stable self-similar blowup in energy supercritical Yang-Mills theory. Math. Z. 278(3–4), 1005–1032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donninger R., Schörkhuber B.: Stable self-similar blow up for energy subcritical wave equations. Dyn. Partial Differ. Equ. 9(1), 63–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donninger R., Schörkhuber B.: Stable blow up dynamics for energy supercritical wave equations. Trans. Am. Math. Soc. 366(4), 2167–2189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donninger R., Schörkhuber B., Aichelburg P.: On stable self-similar blow up for equivariant wave maps: the linearized problem. Ann. Henri Poincaré 13, 103–144 (2012). doi:10.1007/s00023-011-0125-0

  17. Dumitraşcu O.: Equivariant solutions of the Yang-Mills equations. Stud. Cerc. Mat. 34(4), 329–333 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Eardley Douglas M., Moncrief V.: The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties. Comm. Math. Phys. 83(2), 171–191 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Eardley Douglas M., Moncrief V.: The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. II. Completion of proof. Comm. Math. Phys. 83(2), 193–212 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Elaydi S.: An introduction to difference equations. Undergraduate Texts in Mathematics. third edition. Springer, New York (2005)

    Google Scholar 

  21. Gundlach, C., Martín-García, J.: Critical phenomena in gravitational collapse. Living Rev. Relat. 10(5), (2007)

  22. Klainerman S., Machedon M.: Finite energy solutions of the Yang-Mills equations in R 3+1. Ann. Math. 2(142(1)), 39–119 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klainerman S., Tataru D.: On the optimal local regularity for Yang-Mills equations in R 4+1. J. Am. Math. Soc. 12(1), 93–116 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krieger J., Schlag W., Tataru D.: Renormalization and blow up for the critical Yang-Mills problem. Adv. Math. 221(5), 1445–1521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krieger J., Sterbenz J.: Global regularity for the Yang-Mills equations on high dimensional Minkowski space. Mem. Am. Math. Soc. 223(1047), vi+99 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Phillips G.M.: Interpolation and approximation by polynomials. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 14. Springer-Verlag, New York (2003)

    Book  Google Scholar 

  27. Raphaël, P., Rodnianski, I.: Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publ. Math. Inst. Hautes Études Sci., 1–122 (2012)

  28. Stefanov A.: Global regularity for Yang-Mills fields in R 1+5. J. Hyperbolic Differ. Equ. 7(3), 433–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sterbenz J.: Global regularity and scattering for general non-linear wave equations. II. (4 + 1) dimensional Yang-Mills equations in the Lorentz gauge. Am. J. Math. 129(3), 611–664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hooft, G.: 50 years of Yang-Mills theory. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)

  31. Titchmarsh, E.C.: The theory of functions. Oxford University Press, Oxford (1958) (Reprint of the second (1939) edition)

  32. Wall H.S.: Polynomials whose zeros have negative real parts. Am. Math. Monthly 52, 308–322 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Costin.

Additional information

Communicated by W. Schlag

Roland Donninger is supported by a Sofja Kovalevskaja Award granted by the Alexander von Humboldt Foundation and the German Federal Ministry of Education and Research.

Ovidiu Costin is partially supported by the NSF DMS Grant 1108794.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costin, O., Donninger, R., Glogić, I. et al. On the Stability of Self-Similar Solutions to Nonlinear Wave Equations. Commun. Math. Phys. 343, 299–310 (2016). https://doi.org/10.1007/s00220-016-2588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2588-9

Keywords

Navigation