Skip to main content
Log in

Existence and Regularity of Propagators for Multi-Particle Schrödinger Equations in External Fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider Schrödinger equations for N number of particles in (classical) electro-magnetic fields that are interacting with each other via time dependent inter-particle potentials. We prove that they uniquely generate unitary propagators \({\{U(t,s), t,s \in \mathbb{R}\}}\) on the state space \({\mathcal{H}}\) under the conditions that fields are spatially smooth and do not grow too rapidly at infinity so that propagators for single particles satisfy Strichartz estimates locally in time, and that local singularities of inter-particle potentials are not too strong that time frozen Hamiltonians define natural selfadjoint realizations in \({\mathcal{H}}\). We also show, under very mild additional assumptions on the time derivative of inter-particle potentials, that propagators possess the domain of definition of the quantum harmonic oscillator \({\Sigma(2)}\) as an invariant subspace such that, for initial states in \({\Sigma(2)}\), solutions are C 1 functions of the time variable with values in \({\mathcal{H}}\). New estimates of Strichartz type for propagators for N independent particles in the field will be proved and used in the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asada K., Fujiwara D.: L 2 boundedness of some oscillatory integral operators. Jpn. J. Math. New Ser. 4, 299–361 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Aiba D., Yajima K.: Schrödinger equations with time-dependent strong magnetic fields. St. Petersburg Math. J. 25, 175–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergh J., Löfström J.: Interpolation Spaces, An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  4. Christ M., Kiselev A.: Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cycon H.M., Froese R.G., Kirsch W., Simon B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Springer, Berlin (1987)

    MATH  Google Scholar 

  6. Dirac P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1930)

    MATH  Google Scholar 

  7. Diestel J., Uhl J.J. Jr.: Vector Measures, Mathematical Surveys, vol. 15. Amer. Math. Soc., Providence (1977)

    Book  MATH  Google Scholar 

  8. Faupin J., Moeller J.S., Skibsted E.: Regurality of bound states. Rev. Math. Phys. 23, 453–530 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujiwara D.: Remarks on the convergence of Feynman path integral. Duke Math. J. 47, 559–600 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ichinose W.: A note on the existence and \({\hbar}\)-dependency of the solution of equations in quantum mechanics. Osaka J. Math. 32, 327–345 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Iwatsuka A.: Essential self-adjointness of the Schrödinger operators with magnetic fields diverging at infinity. Publ. RIMS Kyoto Univ. 26, 841–860 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kato T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc. 70, 195–211 (1951)

    MATH  Google Scholar 

  13. Kato T.: Remarks on Schrödinger operators with vector potentials. Integr. Equ. Oper. Theory 1, 103–113 (1978)

    Article  MATH  Google Scholar 

  14. Kato T.: Linear evolution equations of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo Sect. I 17, 241–258 (1970)

    MathSciNet  MATH  Google Scholar 

  15. Kato T.: Linear evolution equations of “hyperbolic” type. II. J. Math. Soc. Japan 25, 648–666 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kato, T.: Abstract evolution equations, linear and quasilinear, revisited, Functional analysis and related topics, 1991 (Kyoto), pp. 103–125, Lecture Notes in Math., vol. 1540. Springer, Berlin (1993)

  17. Keel M., Tao T.: End point Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, J.M., Magenes, E.: Problémes aux limites non homogénes et applications I. Dunod, Paris (1968)

  19. Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. II. Fourier Analysis, Selfadjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  20. Sogge C.D.: Lectures on Non-linear Wave Wquations, 2nd edn. International press, Boston (2008)

    Google Scholar 

  21. Taylor M.: Pseudo-differential Operators. Princeton University Press, NJ (1981)

    Google Scholar 

  22. Yajima K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Yajima K.: Schrödinger evolution equations with magnetic fields. J. Anal. Math. 56, 29–76 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yajima K.: Schrödinger equations with time-dependent unbounded singular potentials. Rev. Math. Phys. 23, 823–838 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yosida K.: Functional Analysis. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yajima.

Additional information

Communicated by R. Seiringer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yajima, K. Existence and Regularity of Propagators for Multi-Particle Schrödinger Equations in External Fields. Commun. Math. Phys. 347, 103–126 (2016). https://doi.org/10.1007/s00220-016-2582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2582-2

Keywords

Navigation