Skip to main content
Log in

Resolution of Chern–Simons–Higgs Vortex Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well known that the presence of multiple constraints of non-Abelian relativisitic Chern–Simons–Higgs vortex equations makes it difficult to develop an existence theory when the underlying Cartan matrix K of the equations is that of a general simple Lie algebra and the strongest result in the literature so far is when the Cartan subalgebra is of dimension 2. In this paper we overcome this difficulty by implicitly resolving the multiple constraints using a degree-theorem argument, utilizing a key positivity property of the inverse of the Cartan matrix deduced in an earlier work of Lusztig and Tits, which enables a process that converts the equality constraints to inequality constraints in the variational formalism. Thus this work establishes a general existence theorem that settles a long-standing open problem in the field regarding the general solvability of the equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrikosov A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957)

    Google Scholar 

  2. Aharony O., Bergman O., Jafferis D.L., Maldacena J.: \({\mathcal{N}}\)=6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aubin T.: Nonlinear Analysis on Manifolds: Monge–Ampére Equations. Springer, Berlin and New York (1982)

    Book  MATH  Google Scholar 

  4. Bagger J., Lambert N.: Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bagger J., Lambert N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bagger J., Lambert N.: Comments on multiple M2-branes. J. High Energy Phys. 0802, 105 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Belyaev D., Brink L., Kim S.-S., Ramond P.: The BLG theory in light-cone superspace. J. High Energy Phys. 1004, 026 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bezryadina A., Eugenieva E., Chen Z.: Self-trapping and flipping of double-charged vortices in optically induced photonic lattices. Opt. Lett. 31, 2456–2458 (2006)

    Article  ADS  Google Scholar 

  9. Bogomol’nyi E.B.: The stability of classical solutions. Sov. J. Nucl. Phys. 24, 449–454 (1976)

    MathSciNet  Google Scholar 

  10. Caffarelli L.A., Yang Y.: Vortex condensation in the Chern–Simons Higgs model: An existence theorem. Commun. Math. Phys. 168, 321–336 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chakrabortty S., Chowdhury S.P., Ray K.: Some BPS configurations of the BLG theory. Phys. Lett. B 703, 172–179 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chen R., Guo Y., Spirn D., Yang Y.: Electrically and magnetically charged vortices in the Chern–Simons–Higgs theory. Proc. R. Soc. A 465, 3489–3516 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chen S., Han X., Lozano G., Schaposnik F.A.: Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor. J. Differ. Equ. 259, 2458–2498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chen S., Zhang R., Zhu M.: Multiple vortices in the Aharmony–Bergman–Jafferis–Maldacena model. Ann. Henri Poincaré 14, 1169–1192 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chern S.S., Simons J.: Some cohomology classes in principal fiber bundles and their application to Riemannian geometry. Proc. Nat. Acad. Sci. USA 68, 791–794 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chern S.S., Simons J.: Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chernodub M.N., Van Doorsselaere J., Verschelde H.: Electromagnetically superconducting phase of the vacuum in a strong magnetic field: structure of superconductor and superfluid vortex lattices in the ground state. Phys. Rev. D 85, 045002 (2012)

    Article  ADS  Google Scholar 

  18. Gennes, P.G.de : Superconductivity of Metals and Alloys, 2nd ed. Westview Press, Boulder (1999)

  19. Deser S., Jackiw R., Templeton S.: Three-dimensional massive gauge theories. Phys. Rev. Lett. 48, 975–978 (1982)

    Article  ADS  Google Scholar 

  20. Deser S., Jackiw R., Templeton S.: Topologically massive gauge theories. Ann. Phys. 140, 372–411 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ding W., Jost J., Li J., Wang G.: An analysis of the two-vortex case in the Chern–Simons–Higgs model. Calc. Var. PDE 7, 87–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dunne, G.: Self-Dual Chern–Simons Theories, Lecture Notes in Physics, vol. m 36. Springer, Berlin (1995)

  23. Dunne G.: Mass degeneracies in self-dual models. Phys. Lett. B 345, 452–457 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  24. Dunne G., Jackiw R., Pi S.-Y., Trugenberger C.: Self-dual Chern–Simons solitons and two-dimensional nonlinear equations. Phys. Rev. D 43, 1332–1345 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ezhuthachan B., Mukhi S., Papageorgakis C.: The power of the Higgs mechanism: higher-derivative BLG theories. J. High Energy Phys. 0904, 101 (2009)

    Article  ADS  Google Scholar 

  26. Fontana L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68, 415–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fröhlich, J.: The fractional quantum Hall effect, Chern–Simons theory, and integral lattices, Proc. Internat. Congr. Math., pp. 75–105, Birkhäuser, Basel (1995)

  28. Fröhlich J., Marchetti P.: Quantum field theory of anyons. Lett. Math. Phys. 16, 347–358 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Fröhlich J., Marchetti P.A.: Quantum field theories of vortices and anyons. Commun. Math. Phys. 121, 177–223 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. In: Ter Haar, D. (ed.) Collected Papers of L. D. Landau, pp. 546–568. Pergamon, New York (1965)

  31. Gustavsson A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66–76 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Han X., Tarantello G.: Doubly periodic self-dual vortices in a relativistic non-Abelian Chern–Simons model. Calc. Var. PDE 49, 1149–1176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Han X., Yang Y.: Existence theorems for vortices in the Aharmony–Bergman–Jafferis–Maldacena model. Commun. Math. Phys. 333, 229–259 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. Han, X., Yang, Y.: Relativistic Chern–Simons–Higgs vortex equations, Trans. Am. Math. Soc. (2016) (in press). doi:10.1090/tran/6746

  35. Hong J., Kim Y., Pac P.-Y.: Multivortex solutions of the Abelian Chern–Simons–Higgs theory. Phys. Rev. Lett. 64, 2330–2333 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Horvathy P.A., Zhang P.: Vortices in (Abelian) Chern–Simons gauge theory. Phys. Rep. 481, 83–142 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. Humphreys, J.E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge, UK (1990)

  38. Inouye S., Gupta S., Rosenband T., Chikkatur A.P., Görlitz A., Gustavson T.L., Leanhardt A.E., Pritchard D.E., Ketterle W.: Observation of vortex phase singularities in Bose-Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001)

    Article  ADS  Google Scholar 

  39. Jackiw R., Templeton S.: How super-renormalizable interactions cure their infrared divergences. Phys. Rev. D 23, 2291–2304 (1981)

    Article  ADS  Google Scholar 

  40. Jackiw R., Weinberg E.J.: Self-dual Chern–Simons vortices. Phys. Rev. Lett. 64, 2334–2337 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Julia B., Zee A.: Poles with both magnetic and electric charges in non-Abelian gauge theory. Phys. Rev. D 11, 2227–2232 (1975)

    Article  ADS  Google Scholar 

  42. Kac V.G.: Infinite-Dimensional Lie Algebras, 3rd ed. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  43. Kawaguchi Y., Ohmi T.: Splitting instability of a multiply charged vortex in a Bose–Einstein condensate. Phys. Rev. A 70, 043610 (2004)

    Article  ADS  Google Scholar 

  44. Khomskii D.I., Freimuth A.: Charged vortices in high temperature superconductors. Phys. Rev. Lett. 75, 1384–1386 (1995)

    Article  ADS  Google Scholar 

  45. Kim C., Kim Y., Kwon O.K., Nakajima H.: Vortex-type half-BPS solitons in ABJM theory. Phys. Rev. D 80, 045013 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  46. Kumar C.N., Khare A.: Charged vortex of finite energy in non-Abelian gauge theories with Chern–Simons term. Phys. Lett. B 178, 395–399 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  47. Lusztig G., Tits J.: The inverse of a Cartan matrix. An. Univ. Timisoara Ser. Stiint. Mat. 30, 17–23 (1992)

    MathSciNet  MATH  Google Scholar 

  48. Matsuda Y., Nozakib K., Kumagaib K.: Charged vortices in high temperature superconductors probed by nuclear magnetic resonance. J. Phys. Chem. Solids 63, 1061–1063 (2002)

    Article  ADS  Google Scholar 

  49. Nirenberg L.: Topics in Nonlinear Functional Analysis. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  50. Nolasco M., Tarantello G.: On a sharp Sobolev-type inequality on two-dimensional compact manifolds. Arch. Ration. Mech. Anal. 145, 161–195 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nolasco M., Tarantello G.: Double vortex condensates in the Chern–Simons–Higgs theory. Calc. Var. PDE 9, 31–94 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nolasco M., Tarantello G.: Vortex condensates for the SU(3) Chern–Simons theory. Commun. Math. Phys. 213, 599–639 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Paul S., Khare A.: Charged vortices in an Abelian Higgs model with Chern–Simons term. Phys. Lett. B 17, 420–422 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  54. Prasad M.K., Sommerfield C.M.: Exact classical solutions for the ’t Hooft monopole and the Julia–Zee dyon. Phys. Rev. Lett. 35, 760–762 (1975)

    Article  ADS  Google Scholar 

  55. Rayfield G.W., Reif F.: Evidence for the creation and motion of quantized vortex rings in superfluid helium. Phys. Rev. Lett. 11, 305 (1963)

    Article  ADS  Google Scholar 

  56. Saint-James D., Sarma G., Thomas E.J.: Type II Superconductivity. Pergamon, New York (1969)

    Google Scholar 

  57. Schonfeld J.S.: A massive term for three-dimensional gauge fields. Nucl. Phys. B 185, 157–171 (1981)

    Article  ADS  Google Scholar 

  58. Shevchenko S.I.: Charged vortices in superfluid systems with pairing of spatially separated carriers. Phys. Rev. B 67, 214515 (2003)

    Article  ADS  Google Scholar 

  59. Sokoloff J.B.: Charged vortex excitations in quantum Hall systems. Phys. Rev. B 31, 1924–1928 (1985)

    Article  ADS  Google Scholar 

  60. Spruck J., Yang Y.: Proof of the Julia–Zee theorem. Commun. Math. Phys. 291, 347–356 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Tarantello G.: Multiple condensate solutions for the Chern–Simons–Higgs theory. J. Math. Phys. 37, 3769–3796 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Tarantello, G.: Self-Dual Gauge Field Vortices, an Analytic Approach, Progress in Nonlinear Differential Equations and Their Applications, vol. 72. Birkhäuser, Boston, Basel, Berlin (2008)

  63. ’t Hooft G.: Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276–284 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  64. ’t Hooft G.: A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys. B 153, 141–160 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  65. Tinkham M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)

    Google Scholar 

  66. de Vega H.J., Schaposnik F.: Electrically charged vortices in non-Abelian gauge theories with Chern–Simons term. Phys. Rev. Lett. 56, 2564–2566 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  67. de Vega H.J., Schaposnik F.: Vortices and electrically charged vortices in non-Abelian gauge theories. Phys. Rev. D 34, 3206–3213 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  68. Wang S., Yang Y.: Abrikosows vortices in the critical coupling. SIAM J. Math. Anal. 23, 1125–1140 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  69. Wilczek F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  70. Wilczek F.: Fractional Statistics and Anyon Superconductors. World Scientific, Singapore (1990)

    MATH  Google Scholar 

  71. Yang Y.: The relativistic non-Abelian Chern–Simons equations. Commun. Math. Phys. 186, 199–218 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Yang Y.: Solitons in Field Theory and Nonlinear Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

  73. Yang Y.: Electrically charged solitons in gauge field theory. Acta Math. Sci. 30, 1975–2005 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisong Yang.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Lin, CS. & Yang, Y. Resolution of Chern–Simons–Higgs Vortex Equations. Commun. Math. Phys. 343, 701–724 (2016). https://doi.org/10.1007/s00220-016-2571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2571-5

Keywords

Navigation