Skip to main content
Log in

On Stable Pair Potentials with an Attractive Tail, Remarks on Two Papers by A. G. Basuev

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We revisit two old and apparently little known papers by Basuev (Teoret Mat Fiz 37(1):130–134, 1978, Teoret Mat Fiz 39(1):94–105, 1979) and show that the results contained there yield strong improvements on current lower bounds of the convergence radius of the Mayer series for continuous particle systems interacting via a very large class of stable and tempered potentials, which includes the Lennard-Jones type potentials. In particular we analyze the case of the classical Lennard-Jones gas under the light of the Basuev scheme and, using also some new results (Yuhjtman in J Stat Phys 160(6): 1684–1695, 2015) on this model recently obtained by one of us, we provide a new lower bound for the Mayer series convergence radius of the classical Lennard-Jones gas, which improves by a factor of the order 105 on the current best lower bound recently obtained in de Lima and Procacci (J Stat Phys 157(3):422–435, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam, A., Rivasseau, V.: Tree forests and jungles: a botanical garden for cluster expansions in Constructive physics. In: Constructive Physics (Palaiseau, 1994), volume 446 of Lecture Notes in Phys., pp. 7–36. Springer, Berlin (1995)

  2. Battle G.A., Federbush P.: A phase cell cluster expansion for euclidean field theory. Ann. Phys. 142, 95–139 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Basuev A.G.: A theorem on minimal specific energy for classical systems. Teoret. Mat. Fiz. 37(1), 130–134 (1978)

    MathSciNet  Google Scholar 

  4. Basuev A.G.: Representation for the Ursell functions, and cluster estimates. Teoret. Mat. Fiz. 39(1), 94–105 (1979)

    MathSciNet  Google Scholar 

  5. Brydges, D., Federbush, P.: A new form of the Mayer expansion in classical statistical mechanics. J. Math Phys. 19, 2064 (4 pages) (1978)

  6. Brydges, D.: A short course in cluster expansions. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories, pp. 129–183. Elsevier (1984)

  7. Brydges D., Kennedy T.: Mayer expansions and the Hamilton–Jacobi equation. J. Stat. Phys. 48, 19–49 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Brydges D., Martin Ph.A.: Coulomb systems at low density: a review. J. Stat. Phys. 96, 1163–1330 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cayley A.: A theorem on trees. Q. J. Pure Appl. Math. 23, 376–378 (1889)

    MATH  Google Scholar 

  10. Dobrushin R.L.: Investigation of conditions for the asymptotic existence of the configuration integral of Gibbs distribution. Theory Probab. Appl. 9(4), 566–581 (1964)

    Article  MATH  Google Scholar 

  11. Fernández R., Procacci A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274, 123–140 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fernández R., Procacci A., Scoppola B.: The analyticity region of the hard sphere gas. Improved bounds. J. Stat. Phys. 128(5), 1139–1143 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fisher M.E.: The free energy of a macroscopic system. Arch. Ration. Mech. Anal. 17, 377–410 (1964)

    Article  MathSciNet  Google Scholar 

  14. Fisher M.E., Ruelle D.: The stability of many-particle systems. J. Math. Phys. 7, 260–270 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  15. Gallavotti G.: Statistical Mechanics. A Short Treatise. Springer Verglag, Berlin (1999)

    MATH  Google Scholar 

  16. Glimm G., Jaffe A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  17. Groeneveld J.: Two theorems on classical many-particle systems. Phys. Lett. 3, 50–51 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jones J.E., Ingham A.E.: On the calculation of certain crystal potential constants, and on the cubic crystal of least potential energy. Proc. R. Soc. Lond. A 107, 636–653 (1925)

    Article  ADS  Google Scholar 

  19. de Lima B.N.B., Procacci A.: The Mayer series of the Lennard-Jones gas: improved bounds for the convergence radius. J. Stat. Phys. 157(3), 422–435 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Locatelli M., Schoen F.: Minimal interatomic distance in Morse clusters. J. Glob. Optim. 22, 175–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mayer J.E.: The statistical mechanics of condensing systems. I. J. Chem. Phys. 5, 67–73 (1937)

    Article  ADS  MATH  Google Scholar 

  22. Mayer J.E.: Contribution to statistical mechanics. J. Chem. Phys. 10, 629–643 (1942)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mayer J.E., Mayer M.G.: Statistical Mechanics. Wiley, Chapman & Hall, Limited, London (1940)

    MATH  Google Scholar 

  24. Morais T., Procacci A., Scoppola B.: On Lennard-Jones type potentials and hard-core potentials with an attractive tail. J. Stat. Phys. 157, 17–39 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Penrose, O.: Convergence of fugacity expansions for fluids and lattice gases. J. Math. Phys. 4, 1312 (9 pages) (1963)

  26. Penrose, O.: The remainder in Mayer’s fugacity series. J. Math. Phys. 4, 1488 (7 pages) (1963)

  27. Penrose, O.: Convergence of fugacity expansions for classical systems. In: Bak, A.(ed.), Statistical Mechanics: Foundations and Applications. Benjamin, New York (1967)

  28. Petrina, D.Ya., Gerasimenk, V.I., Malyshev, P.V.: Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems. Translated from the Russian by P. V. Malyshev and D. V. Malyshev. Second edition. Advanced Studies in Contemporary Mathematics, vol. 8. Taylor & Francis, London (2002)

  29. Poghosyan, S., Ueltschi, D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50(5), 053509 (17 pp) (2009)

  30. Procacci, A.: Abstract polymer models with general pair interactions. J. Stat. Phys. 129(1) 171–188 and arXiv:0707.0016 version 2 of 26 Nov. 2008. See also A. Procacci (2009): Erratum and Addendum:“Abstract Polymer Models with General Pair Interactions”, J. Stat. Phys., 135, 779–786 (2007)

  31. Procacci A., de Lima B.N.B., Scoppola B.: A remark on high temperature polymer expansion for lattice systems with infinite range pair interactions. Lett. Math. Phys. 45, 303–322 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rota G.: On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340–368 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ruelle D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc, New York-Amsterdam (1969)

    MATH  Google Scholar 

  34. Ruelle D.: Correlation functions of classical gases. Ann. Phys. 5, 109–120 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ruelle D.: Cluster property of the correlation functions of classical gases. Rev. Mod. Phys. 36, 580–584 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  36. Schachinger W., Addis B., Bomze I.M., Schoen F.: New results for molecular formation under pairwise potential minimization. Comput. Optim. Appl. 38, 329–349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ursell H.D.: The evaluation of Gibbs’ phase-integral for imperfect gases. Math. Proc. Camb. Philos. Soc. 23, 685–697 (1927)

    Article  ADS  MATH  Google Scholar 

  38. Wales, D.J., Doye, J.P.K., Dullweber, A., Hodges, M.P., Naumkin, F.Y., Calvo, F., Hernández-Rojas, J., Middleton, T.F.: The Cambridge Cluster Database. http://www-wales.ch.cam.ac.uk/CCD.html

  39. Williamson, S.G.: Combinatorics for Computer Science. Computers and Math Series. Computer Science Press, Rockville (1985)

  40. Yuhjtman S.A.: A sensible estimate for the stability constant of the Lennard-Jones potential. J. Stat. Phys. 160(6), 1684–1695 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Procacci.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, B.N.B., Procacci, A. & Yuhjtman, S. On Stable Pair Potentials with an Attractive Tail, Remarks on Two Papers by A. G. Basuev. Commun. Math. Phys. 343, 445–476 (2016). https://doi.org/10.1007/s00220-015-2529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2529-z

Keywords

Navigation