Skip to main content
Log in

The Dynamical Sine-Gordon Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce the dynamical sine-Gordon equation in two space dimensions with parameter \({\beta}\), which is the natural dynamic associated to the usual quantum sine-Gordon model. It is shown that when \({\beta^{2} \in (0, \frac{16\pi}{3})}\) the Wick renormalised equation is well-posed. In the regime \({\beta^{2} \in (0, 4\pi)}\), the Da Prato–Debussche method [J Funct Anal 196(1):180–210, 2002; Ann Probab 31(4):1900–1916, 2003] applies, while for \({\beta^{2} \in [4\pi, \frac{16\pi}{3})}\), the solution theory is provided via the theory of regularity structures [Hairer, Invent Math 198(2):269–504, 2014]. We also show that this model arises naturally from a class of \({2 + 1}\) -dimensional equilibrium interface fluctuation models with periodic nonlinearities. The main mathematical difficulty arises in the construction of the model for the associated regularity structure where the role of the noise is played by a non-Gaussian random distribution similar to the complex multiplicative Gaussian chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569–632, 2015].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S., Haba Z., Russo F.: A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise. Probab. Theory Relat. Fields 121(3), 319–366 (2001). doi:10.1007/s004400100153

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

  3. Benfatto G., Gallavotti G., Nicolò F.: On the massive sine-Gordon equation in the first few regions of collapse. Commun. Math. Phys. 83(3), 387–410 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chui S.T., Weeks J.D.: Dynamics of the roughening transition. Phys. Rev. Lett. 40, 733–736 (1978). doi:10.1103/PhysRevLett.40.733

    Article  ADS  Google Scholar 

  5. Dimock J., Hurd T.R.: Sine-Gordon revisited. Ann. Henri Poincaré 1(3), 499–541 (2000). doi:10.1007/s000230050005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Da Prato G., Debussche A.: Two-dimensional Navier–Stokes equations driven by a space–time white noise. J. Funct. Anal. 196(1), 180–210 (2002). doi:10.1006/jfan.2002.3919

    Article  MathSciNet  MATH  Google Scholar 

  7. Da Prato G., Debussche A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Falco P.: Kosterlitz–Thouless transition line for the two dimensional Coulomb gas. Commun. Math. Phys. 312(2), 559–609 (2012). doi:10.1007/s00220-012-1454-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fröhlich J.: Classical and quantum statistical mechanics in one and two dimensions: two-component Yukawa- and Coulomb systems. Commun. Math. Phys. 47(3), 233–268 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fröhlich J., Spencer T.: The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81(4), 527–602 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi. 3, e6, 75 (2015). doi:10.1017/fmp.2015.2

  12. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014). doi:10.1007/s00222-014-0505-4. arXiv:1303.5113

  13. Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015). (Preprint)

  14. Kahng B., Park K.: Dynamics of the orientational roughening transition. Phys. Rev. B 47, 5583–5588 (1993). doi:10.1103/PhysRevB.47.5583

    Article  ADS  Google Scholar 

  15. Kahng B., Park K.: Dynamic sine-Gordon renormalization of the Laplacian roughening transition below two dimensions. Phys. Rev. B 49, 7026–7028 (1994). doi:10.1103/PhysRevB.49.7026

    Article  ADS  Google Scholar 

  16. Kosterlitz J.M., Thouless D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6(7), 1181 (1973)

    Article  ADS  Google Scholar 

  17. Kupiainen, A.: Renormalization group and stochastic PDE’s. Ann. Henri. Poincare (2014). doi:10.1007/s00023-015-0408-y

  18. Lacoin H., Rhodes R., Vargas V.: Complex Gaussian multiplicative chaos. Commun. Math. Phys. 337(2), 569–632 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Meyer, Y.: Wavelets and operators. In: Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992). (Translated from the 1990 French original by D. H. Salinger)

  20. Neudecker B.: Critical dynamics of the sine-Gordon model in \({d = 2 - \epsilon}\) dimensions. Z. Phys. B Condens. Matter 52(2), 145–149 (1983). doi:10.1007/BF01445296

    Article  ADS  Google Scholar 

  21. Nicolò F.: On the massive sine-Gordon equation in the higher regions of collapse. Commun. Math. Phys. 88(4), 581–600 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Nicolò F., Renn J., Steinmann A.: On the massive sine-Gordon equation in all regions of collapse. Commun. Math. Phys. 105(2), 291–326 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Parisi G., Wu Y.S.: Perturbation theory without gauge fixing. Sci. Sin. 24(4), 483–496 (1981)

    MathSciNet  Google Scholar 

  24. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293. Springer, Berlin (1991)

  25. Triebel H.: Theory of function spaces. In: Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Shen.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hairer, M., Shen, H. The Dynamical Sine-Gordon Model. Commun. Math. Phys. 341, 933–989 (2016). https://doi.org/10.1007/s00220-015-2525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2525-3

Keywords

Navigation