Skip to main content
Log in

The Cubic Dirac Equation: Small Initial Data in \({{H^{\frac{1}{2}}} (\mathbb{R}^{2}}\))

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Global well-posedness and scattering for the cubic Dirac equation with small initial data in the critical space \({{H^{\frac{1}{2}}} (\mathbb{R}^{2}}\)) is established. The proof is based on a sharp endpoint Strichartz estimate for the Klein–Gordon equation in dimension n = 2, which is captured by constructing an adapted systems of coordinate frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejenaru I., Herr S.: The cubic Dirac equation: small initial data in \({H^{1}(\mathbb{R}^{3})}\). Commun. Math. Phys. 335(1), 43–82 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bejenaru I., Ionescu A.D., Kenig C.E., Tataru D.: Global Schrödinger maps in dimensions d ≥ 2: small data in the critical Sobolev spaces. Ann. Math. (2) 173((3), 1443–1506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bournaveas,N., Candy, T.: Globalwell-posedness for the massless cubic dirac equation. arXiv:1407.0655

  4. Candy T.: Global existence for an L 2 critical nonlinear Dirac equation in one dimension. Adv. Differ. Equ. 16(7-8), 643–666 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Cazenave T., Vázquez L.: Existence of localized solutions for a classical nonlinear Dirac field. Commun. Math. Phys. 105(1), 35–47 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D’Ancona P., Foschi D., Selberg S.: Local well-posedness below the charge norm for the irac–Klein–Gordon system in two space dimensions. J. Hyperbol. Differ. Equ. 4(2), 295–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Escobedo, M., Vega, L.: A semilinear Dirac equation in \({H^{s} {\rm (\mathbf {R}}^{3})}\) for s >1. SIAM J. Math. Anal. 28(2), 338–362 (1997)

  8. Finkelstein R., LeLevier R., Ruderman M.: Nonlinear spinor fields. Phys. Rev. 83(2), 326–332 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hadac M., Herr S., Koch H.: Well-posedness and scattering for the KP-II equation in a critical space. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 917–941 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Krieger J.: Global regularity of wave maps from \({\mathbb{R}^{3+1}}\) to surfaces. Commun. Math. Phys. 238, 333–366 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Krieger J.: Global regularity of wave maps from \({\mathbb{R}^{2+1}}\) to \({\mathbb{H}^{2}}\). small energy. Commun. Math. Phys. 250, 507–580 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Krieger, J., Schlag, W.: Concentration compactness for critical wave maps. In: EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich (2012)

  13. Machihara S., Nakamura M., Nakanishi K., Ozawa T.: Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219(1), 1–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Machihara S., Nakanishi K., Ozawa T.: Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation. Rev. Mat. Iberoamericana 19(1), 179–194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Machihara S., Nakanishi K., Tsugawa K.: Well-posedness for nonlinear Dirac equations in one dimension. Kyoto J. Math. 50(2), 403–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Merle F.: Existence of stationary states for nonlinear Dirac equations. J. Differ. Equ. 74(1), 50–68 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Montgomery-Smith S.J.: Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations. Duke Math. J. 91(2), 393–408 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nakanishi K., Schlag,W.: Invariantmanifolds and dispersive Hamiltonian evolution equations. In: Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich (2011)

  19. Hartmut P.: Local well-posedness for the nonlinear Dirac equation in two space dimensions. Commun. Pure Appl. Anal. 13(2), 673–685 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Hartmut P.: Corrigendum of ’Local well-posedness for the nonlinear Dirac equation in two space dimensions’. Commun. Pure Appl. Anal. 14(2), 737–742 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Soler M.: Classial, stable, nonlinear spinor fields with positive rest energy. Phys. Rev. D 1(10), 2766–2769 (1970)

    Article  ADS  Google Scholar 

  22. Sterbenz J., Tataru D.: Energy dispersed large data wave maps in 2 + 1 dimensions. Commun. Math. Phys. 298(1), 139–230 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Strauss W., Vázquez L.: Stability under dilations of nonlinear spinor fields. Phys. Rev. D 34(2), 641–643 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Tao T.: Global regularity of wave maps. II. Small energy in two dimensions. Commun. Math. Phys. 224(2), 443–544 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Tao, T.: A counterexample to an endpoint bilinear Strichartz inequality. Electron. J. Differ. Equ. arXiv:math/0609849 (2006)

  26. Tataru D.: On global existence and scattering for the wave maps equation. Am. J. Math. 123(1), 37–77 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Bejenaru.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejenaru, I., Herr, S. The Cubic Dirac Equation: Small Initial Data in \({{H^{\frac{1}{2}}} (\mathbb{R}^{2}}\)). Commun. Math. Phys. 343, 515–562 (2016). https://doi.org/10.1007/s00220-015-2508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2508-4

Keywords

Navigation