Skip to main content
Log in

A Categorification of the Boson–Fermion Correspondence via Representation Theory of sl(∞)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In recent years different aspects of categorification of the boson–fermion correspondence have been studied. In this paper we propose a categorification of the boson–fermion correspondence based on the category of tensor modules of the Lie algebra sl(∞) of finitary infinite matrices. By \({\mathbb{T}^{+}}\) we denote the category of “polynomial” tensor sl(∞)-modules. There is a natural “creation” functor \({{\mathcal{T}_{N}} : {\mathbb{T}^{+}} \to {\mathbb{T}^{+}}}\), \({M \mapsto N \otimes M, \quad M,N \in \mathbb{T}^{+}}\). The key idea of the paper is to employ the entire category \({\mathbb{T}}\) of tensor sl(∞)-modules in order to define the “annihilation” functor \({{\mathcal{D}_{N}} : {\mathbb{T}^{+}} \to {\mathbb{T}^{+}}}\) corresponding to \({{\mathcal{T}_{N}}}\). We show that the relations allowing one to express fermions via bosons arise from relations in the cohomology of complexes of linear endofunctors on \({{\mathbb{T}^{+}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cautis S., Licata A.: Heisenberg categorification and Hilbert schemes. Duke Math. J. 161, 2469–2547 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cautis, S., Licata, A.: Vertex operators and 2-representations of quantum affine algebras. arXiv:1112.6189

  3. Crane L., Frenkel I.B.: Four-dimensional topological quantum field theory, Hopf categories, and the canonical basis. J. Math. Phys. 35, 5136–5154 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cautis S., Sussan J.: On a categorical boson–fermion correspondence. Commun. Math. Phys. 336, 649–669 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Dan-Cohen, E., Penkov, I., Serganova, V.: A Koszul category of representations of finitary Lie algebras. Adv. Math, to appear. arXiv:1105.3407

  6. Date E., Jimbo M., Kashiwara M., Miwa T.: Transformation soliton equations, euclidean Lie algebras and reduction of the kp hierarchy. Publ. RIMS Kyoto Univ. 18, 1077–1110 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frenkel I.B.: Two constructions of affine Lie algebras and boson–fermion correspondence in quantum field theory. J. Funct. Anal. 44, 259–327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fulton W., Harris J.: Representation Theory, A First Course. Springer–Verlag, Berlin (1991)

    MATH  Google Scholar 

  9. Hong, J., Touze, A., Yacobi, O.: Polynomial functors and categorifications of Fock space. In: Howe, R., Honziker, M., Willenbring, J.F. (eds.) Symmetry: Representation Theory and Its Applications, volume 257 of Progress in Mathematics, pp. 327–352. Springer New York (2014). arXiv:1111.5317

  10. Hong, J., Yacobi, O.: Polynomial representations and categorifications of Fock space. Algebras Represent. Theory 16(5), 1273–1311 (2013). arXiv:1101.2456

  11. Hong J., Yacobi O.: Polynomial functors and categorifications of Fock space ii. Adv. Math. 237, 360–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khovanov M.: A categorification of the Jones polynomial. Duke Math. J. 101, 359–426 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khovanov, M.: Heisenberg algebra and graphical calculus. arXiv:1009.3295

  14. Licata A., Savage A.: Hecke algebras, finite general graphs, and Heisenberg categorification. Quantum Topol. 4, 125–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Licata A., Savage A.: A survey of Heisenberg categorification via graphical calculus. Bull. Inst. Math. Acad. Sin. New Ser. 7, 291–321 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Macdonald I.: Symmetric Functions and Hall polynomials. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  17. Mackey G.: On infinite dimensional linear spaces. Trans. AMS 57(2), 155–207 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mandelstam S.: Soliton operators for the quantized sine–Gordon equation. Phys. Rev. D 11, 3026–3030 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  19. Penkov, I., Styrkas, K.: Tensor representations of infinite-dimensional root-reductive Lie algebras. In: Developments and Trends in Infinite-Dimensional Lie Theory. Progress in Mathematics, vol. 288, Birkhauser, pp. 127–150 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Penkov.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frenkel, I., Penkov, I. & Serganova, V. A Categorification of the Boson–Fermion Correspondence via Representation Theory of sl(∞). Commun. Math. Phys. 341, 911–931 (2016). https://doi.org/10.1007/s00220-015-2491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2491-9

Keywords

Navigation