Skip to main content
Log in

Metric Projective Geometry, BGG Detour Complexes and Partially Massless Gauge Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A projective geometry is an equivalence class of torsion free connections sharing the same unparametrised geodesics; this is a basic structure for understanding physical systems. Metric projective geometry is concerned with the interaction of projective and pseudo-Riemannian geometry. We show that the BGG machinery of projective geometry combines with structures known as Yang–Mills detour complexes to produce a general tool for generating invariant pseudo-Riemannian gauge theories. This produces (detour) complexes of differential operators corresponding to gauge invariances and dynamics. We show, as an application, that curved versions of these sequences give geometric characterizations of the obstructions to propagation of higher spins in Einstein spaces. Further, we show that projective BGG detour complexes generate both gauge invariances and gauge invariant constraint systems for partially massless models: the input for this machinery is a projectively invariant gauge operator corresponding to the first operator of a certain BGG sequence. We also connect this technology to the log-radial reduction method and extend the latter to Einstein backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkalaev K.B., Grigoriev M.: Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type. Nucl. Phys. B 853, 663–687 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Armstrong, S.: Projective holonomy. I. Principles and properties. Ann. Glob. Anal. Geom. 33, 47–69 (2008). arXiv:math/0602620

  3. Bailey T.N., Eastwood M.G., Gover A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24, 1191–1217 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barnich G., Grigoriev M.: Parent form for higher spin fields on anti-de Sitter space. JHEP 0608, 013–052 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  5. Baston R.J.: Almost Hermitian symmetric manifolds. II. Differential invariants. Duke Math. J. 63, 113–138 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biswas, T., Siegel, W.: Radial dimensional reduction: anti-de Sitter theories from flat. JHEP 0207, 005–034 (2002). arXiv:hep-th/0203115

  7. Bokan N., Gilkey P., Živaljević, R.: An inhomogeneous elliptic complex. J. Anal. Math. 61, 367–393 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of \({\mathfrak{g}}\)-modules. In: Gelfand, I.M. (ed.) Lie Groups and Their Representations, pp. 21–64. Adam Hilger (1975)

  9. Branson T., Gover A.R.: Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature. Commun. Partial Differ. Equ. 30, 1611–1669 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Branson, T., Gover, A.R.: The conformal deformation detour complex for the obstruction tensor. Proc. Am. Math. Soc. 135, 2961–2965

  11. Calabi, E.: On compact Riemannian manifolds with constant curvature I. In: Differential Geometry, Proceedings of Symposia in Pure Mathematics, vol. III, pp. 155–180. American Mathematical Society, Providence (1961)

  12. Calderbank D., Diemer T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences. J. Reine Angew. Math. 537, 67–103 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Calderbank, D., Diemer, T., Souček, V.: Ricci-corrected derivatives and invariant differential operators. Differ. Geom. Appl. 23, 149–175 (2005). arXiv:math/0310311

  14. Čap, A.: Overdetermined systems, conformal differential geometry, and the BGG complex. In: Symmetries and Overdetermined Systems of Partial Differential Equations, pp. 1–24, The IMA Volumes in Mathematics and its Applications, vol. 144. Springer, New York (2008). arXiv:math/0610225

  15. Čap A., Gover A.R.: Tractor calculi for parabolic geometries. Trans. Am. Math. Soc. 354(4), 1511–1548 (2002)

    Article  MATH  Google Scholar 

  16. Čap, A., Gover, A.R.: Projective compactifications and Einstein metrics. J. Reine Angew. Math. (to appear). doi:10.1515/crelle-2014-0036. arXiv:1304.1869

  17. Čap A., Gover A.R., Hammerl M.: Projective BGG equations, algebraic sets, and compactifications of Einstein geometries. J. Lond. Math. Soc. 86, 433–454 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Čap A., Gover A.R., Hammerl M.: Holonomy reductions of Cartan geometries and curved orbit decompositions. Duke Math. J. 163(5), 1035–1070 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Čap A., Gover A.R., Macbeth H.: Einstein metrics in projective geometry. Geom. Dedicata 168, 235–244 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Čap A., Slovák J., Souček V.: Bernstein–Gelfand–Gelfand sequences. Ann. Math. 154, 97–113 (2001)

    Article  MATH  Google Scholar 

  21. Čap A., Souček V.: Subcomplexes in curved BGG-sequences. Math. Ann. 354(1), 111–136 (2012). arXiv:math.dg/0508534

  22. Cartan E.: Sur les variétés à connexion projective. Bull. Soc. Math. Fr. 52, 205–241 (1924)

    MATH  MathSciNet  Google Scholar 

  23. Cherney, D., Latini, E., Waldron, A.: BRST detour quantization. J. Math. Phys. 51, 062302, 51–95 (2010). arXiv:0906.4814 [hep-th]

  24. Cherney, D., Latini, E., Waldron, A.: Generalized Einstein operator generating functions. Phys. Lett. B 682, 472–475 (2010). arXiv:0909.4578 [hep-th]

  25. Cherney, D., Latini, E., Waldron, A.: Quaternionic Kähler detour complexes and N=2 supersymmetric black holes. Commun. Math. Phys. 302, 843–873 (2011). arXiv:1003.2234 [hep-th]

  26. Curtright T.: Massless field supermultiplets with arbitrary spin. Phys. Lett. B 85, 219–242 (1979)

    Article  ADS  Google Scholar 

  27. Deser S., Nepomechie R.I.: Anomalous propagation of gauge fields in conformally flat spaces. Phys. Lett. B 132, 321–331 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  28. Deser S., Nepomechie R.I.: Gauge invariance versus masslessness in de Sitter space. Ann. Phys. 154, 396–434 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  29. Deser, S., Joung, E., Waldron, A.: Gravitational- and self-coupling of partially massless spin 2. Phys. Rev. D 86, 104004–104014 (2012). arXiv:1301.4181

  30. Deser, S., Joung, E., Waldron, A.: Partial masslessness and conformal gravity. J. Phys. A 46, 214019–214038 (2013). arXiv:1208.1307

  31. Deser, S., Waldron, A.: Gauge invariances and phases of massive higher spins in (A)dS. Phys. Rev. Lett. 87, 031601–031605 (2001). arXiv:hep-th/0102166

  32. Deser, S., Waldron, A.: Partial masslessness of higher spins in (A)dS. Nucl. Phys. B 607, 577–604 (2001). arXiv:hep-th/0103198

  33. Deser, S., Waldron, A.: Stability of massive cosmological gravitons. Phys. Lett. B 508, 347–353 (2001). arXiv:hep-th/0103255

  34. Deser, S., Waldron, A.: Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations. Phys. Lett. B 513, 137–147 (2001). arXiv:hep-th/0105181

  35. Deser, S., Waldron, A.: Arbitrary spin representations in de Sitter from dS/CFT with applications to dS supergravity. Nucl. Phys. B 662, 379–392 (2003). arXiv:hep-th/0301068

  36. Deser, S., Waldron, A.: Conformal invariance of partially massless higher spins. Phys. Lett. B 603, 30–40 (2004). arXiv:hep-th/0408155

  37. Deser, S., Waldron, A.: Partially massless spin 2 electrodynamics. Phys. Rev. D 74, 084036 (2006). arXiv:hep-th/0609113

  38. Deser, S., Waldron, A.: PM =  EM: partially massless duality invariance. Phys. Rev. D 87, 087702–087705 (2013). arXiv:1301.2238 [hep-th]

  39. Diemer, T.: Conformal geometry, representation theory and linear fields. Ph.D. Thesis, Universität Bonn (1999)

  40. Dolan, L., Nappi, C.R., Witten, E.: Conformal operators for partially massless states. JHEP 0110, 016–029 (2001). arXiv:hep-th/0109096

  41. Eastwood, M.: A complex from linear elasticity. In: The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), pp. 23–29. Rend. Circ. Mat. Palermo (2) Suppl. No. 63 (2000)

  42. Eastwood, M.: Prolongations of linear overdetermined systems on affine and Riemannian manifolds. In: Proceedings of the 24th Winter School “Geometry and Physics”, pp. 89–108. Circolo Matematico di Palermo, Palermo (2005)

  43. Eastwood, M.: Symmetries and overdetermined systems of partial differential equations. IMA Vol. Math. Appl. 144, 41–60 (2008)

  44. Eastwood M.: The Cartan product. Bull. Belg. Math. Soc. 11, 641–651 (2005)

    MathSciNet  Google Scholar 

  45. Eastwood, M., Gover, A.R.: The BGG complex on projective space. SIGMA 7, 060–068 (2011). arXiv:1106.4623

  46. Eastwood, M., Rice, J.: Conformally invariant differential operators on Minkowski space and their curved analogues. Commun. Math. Phys. 109 (1987), 207–228. Erratum: Commun. Math. Phys. 144, 213 (1992)

  47. Eastwood, M.G., Matveev, V.: Metric connections in projective differential geometry. In: Symmetries and Overdetermined Systems of Partial Differential Equations, pp. 339–350. The IMA Volumes in Mathematics and its Applications, vol. 144. Springer, New York (2008)

  48. Fedosov, B.: Deformation Quantization and Index Theory. Mathematical topics, vol. 9. Akademie-Verlag, Berlin (1996)

  49. Fronsdal C.: Massless fields with integer spin. Phys. Rev. D 18, 3624–3643 (1978)

    Article  ADS  Google Scholar 

  50. Gallot S.: Équations différentielles charactéristiques de la sphère. Ann. Sci. École Norm. Sup. (4) 12(2), 235–267 (1979)

    MathSciNet  Google Scholar 

  51. Gasqui J.: Sur la résolubilité locale des équations d’Einstein. Compositio Math. 47, 43–69 (1982)

    MATH  MathSciNet  Google Scholar 

  52. Gibbons, G.W., Rychenkova, P.: Cones, triSasakian structures and superconformal invariance. Phys. Lett. B 443, 138 (1998). arXiv:hep-th/9809158

  53. Gover, A.R.: Conformally invariant operators of standard type. Q. J. Math. Oxf. 40, 197–207 (1989)

  54. Gover, A.R., Hallowell, K., Waldron, A.: Higher spin gravitational couplings and the Yang–Mills detour complex. Phys. Rev. D 75, 024032 (2007). arXiv:hep-th/0606160

  55. Gover, A.R., Macbeth, H.: Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry. Differ. Geom. Appl. 33, 44 (2014). arXiv:1212.6286

  56. Gover, A.R., Nurowski, P.N.: Calculus and invariants on almost complex manifolds, including projective and conformal geometry. Ill. J. Math. 57, 383–427 (2013). arXiv:1208.0648

  57. Gover, A.R., Panai, R., Willse, T.: Nearly Kähler geometry and (2,3,5)-distributions via projective holonomy. arXiv:1403.1959

  58. Gover, A.R., Shaukat, A., Waldron, A.: Tractors, mass and Weyl invariance. Nucl. Phys. B 812, 424–455 (2009). arXiv:0810.2867

  59. Gover, A.R., Shaukat, A., Waldron, A.: Weyl invariance and the origins of mass. Phys. Lett. B 675, 93–97 (2009). arXiv:0812.3364

  60. Gover, A.R., Somberg, P., Souček, V.: Yang–Mills detour complexes and conformal geometry. Commun. Math. Phys. 278, 307–327 (2008). arXiv:math/0606401

  61. Grigoriev, M., Waldron, A.: Massive higher spins from BRST and tractors. Nucl. Phys. B 853, 291–343 (2011). arXiv:1104.4994 [hep-th]

  62. Hallowell, K., Waldron, A.: Constant curvature algebras and higher spin action generating functions. Nucl. Phys. B 724, 453–497 (2005). arXiv:hep-th/0505255

  63. Higuchi A.: Forbidden mass range for spin-2 field theory in de Sitter space-time. Nucl. Phys. B 282, 397–438 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  64. Kiosak, V., Matveev, V.: Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two. Commun. Math. Phys. 297, 401–426 (2010). arXiv:0810.0994

  65. Kostant B.: Lie algebra cohomology and the generalized Borel Weil theorem. Ann. Math. 74, 329–387 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  66. Lepowsky J.: A generalization of the Bernstein–Gelfand–Gelfand resolution. J. Algebra 49, 496–511 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  67. Maldacena, J.: Einstein gravity from conformal gravity. arXiv:1105.5632

  68. Mikes J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 311–333 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  69. Matveev V.S.: Hyperbolic manifolds are geodesically rigid. Invent. Math. 151(3), 579–609 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. Shaynkman, O.V., Tipunin, I.Y., Vasiliev, M.A.: Unfolded form of conformal equations in M dimensions and \({o(M + 2)}\) modules. Rev. Math. Phys. 18, 823–886 (2006). arXiv:hep-th/0401086

  71. Sinjukov, N.S.: Geodesic Mappings of Riemannian Spaces (Russian). Nauka, Moscow (1979)

  72. Skvortsov, E.D.: Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects. JHEP 1001, 106 (2010). arXiv:0910.3334

  73. Skvortsov, E.D., Vasiliev, M.A.: Geometric formulation for partially massless fields. Nucl. Phys. B 756, 117 (2006). arXiv:hep-th/0601095

  74. Thomas, T.Y.: Announcement of a projective theory of affinely connected manifolds. Proc. Natl. Acad. Sci. 11, 588–589 (1925)

  75. Vasiliev M.A.: Consistent equations for interacting massless fields of all spins in the first order in curvatures. Ann. Phys. 190, 59–106 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  76. Vasiliev, M.A.: Bosonic conformal higher-spin fields of any symmetry. Nucl. Phys. B 829, 176–224 (2010). arXiv:0909.5226

  77. Zinoviev, Y.: On massive high spin particles in (A)dS. arXiv:hep-th/0108192

  78. Zinoviev, Y.M.: On spin 3 interacting with gravity. Class. Quantum Gravity 26, 035022–035022 (2009). arXiv:0805.2226

  79. Zinoviev, Y.M.: Massive spin-2 in the Fradkin–Vasiliev formalism. I. Partially massless case. Nucl. Phys. B 886, 712–732 (2014). arXiv:1405.4065

  80. Zuckerman G.: Tensor products of finite and infinite dimensional representations of semisimple Lie Groups. Ann. Math. 106, 295–308 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Waldron.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gover, A.R., Latini, E. & Waldron, A. Metric Projective Geometry, BGG Detour Complexes and Partially Massless Gauge Theories. Commun. Math. Phys. 341, 667–697 (2016). https://doi.org/10.1007/s00220-015-2490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2490-x

Keywords

Navigation