Skip to main content
Log in

Stochastic Higher Spin Vertex Models on the Line

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 06 August 2019

This article has been updated

Abstract

We introduce a four-parameter family of interacting particle systems on the line, which can be diagonalized explicitly via a complete set of Bethe ansatz eigenfunctions, and which enjoy certain Markov dualities. Using this, for the systems started in step initial data, we write down nested contour integral formulas for moments and Fredholm determinant formulas for Laplace-type transforms. Taking various choices or limits of parameters, this family degenerates to many of the known exactly solvable models in the Kardar–Parisi–Zhang universality class, as well as leads to many new examples of such models. In particular, asymmetric simple exclusion process, the stochastic six-vertex model, q-totally asymmetric simple exclusion process and various directed polymer models all arise in this manner. Our systems are constructed from stochastic versions of the R-matrix related to the six-vertex model. One of the key tools used here is the fusion of R-matrices and we provide a probabilistic proof of this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 06 August 2019

    This is an erratum to the paper [CP16]. The aim of this note is to address two separate errors in the paper.

  • 06 August 2019

    This is an erratum to the paper [CP16]. The aim of this note is to address two separate errors in the paper.

References

  1. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011). arXiv:1003.0443 [math.PR]

  2. Barraquand, G.: A phase transition for q-TASEP with a few slower particles. Stoch. Proc. Appl. 125, 2674–2699 (2015). arXiv:1404.7409 [math.PR]

  3. Borodin, A., Corwin, I.: Discrete time q-TASEPs. Intern. Math. Res. Not. (2013). arXiv:1305.2972 [math.PR]. doi:10.1093/imrn/rnt206

  4. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014). arXiv:1111.4408 [math.PR]

  5. Barraquand, G., Corwin, I.: The q-Hahn asymmetric exclusion process (2015). arXiv:1501.03445 [math.PR]

  6. Borodin, A., Corwin, I. Ferrari, P.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimension. Commun. Pure Appl. Math. 67(7), 1129–1214 (2014). arXiv:1204.1024

  7. Borodin, A., Corwin, I., Ferrari, P., Veto, B.: Height fluctuations for the stationary KPZ equation (2014). arXiv:1407.6977 [math.PR]

  8. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model (2014). arXiv:1407.6729 [math.PR]

  9. Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz (2014). arXiv:1407.8534 [math-ph]

  10. Borodin, A., Corwin, I., Remenik, D.: Log-Gamma polymer free energy fluctuations via a Fredholm determinant identity. Commun. Math. Phys. 324(1), 215–232 (2013). arXiv:1206.4573

  11. Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. Ann. Probab. 42(6), 2314–2382 (2014). arXiv:1207.5035

  12. Bertini L., Giacomin G.: Stochastic Burgers and KP2 equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Borodin, A.: On a family of symmetric rational functions (2014). arXiv:1410.0976 [math.CO]

  14. Borodin, A., Petrov, L.: Nearest neighbor Markov dynamics on Macdonald processes. Adv. Math. (2013). arXiv:1305.5501 [math.PR]

  15. Carinci, G., Giardina, C., Redig, F., Sasamoto, T.: A generalized asymmetric exclusion process with \({U_q(\mathfrak{sl}_2)}\) stochastic duality (2014). arXiv:1407.3367 [math.PR]

  16. Corwin, I.: The q-Hahn Boson process and q-Hahn TASEP. Intern. Math. Res. Not. (2014). arXiv:1401.3321 [math.PR]

  17. Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. Duke J. Math. 163(3), 513–563 (2014). arXiv:1110.3489 [math.PR]

  18. Corwin, I., Petrov, L.: The q-pushASEP: a new integrable model for traffic in 1 + 1 dimension. J. Stat. Phys. 160(4), 1005–1026 (2015). arXiv:1308.3124 [math.PR]

  19. Corwin, I., Seppäläinen, T., Shen, H.: The strict-weak lattice polymer (2014). arXiv:1409.1794 [math.PR]

  20. Faddeev, L.D.: How algebraic Bethe Ansatz works for integrable model. In: Les-Houches Lecture Notes (1996). arXiv:1407.3367 [math.PR]

  21. Ferrari, P., Veto, B.: Tracy–Widom asymptotics for q-TASEP. Ann. Inst. Hen. Poin. (2013). arXiv:1310.2515 [math.PR]

  22. Gwa L-H., Spohn H.: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A 46, 844–854 (1992)

    Article  ADS  Google Scholar 

  23. Imamura T., Sasamoto T.: Current moments of 1D ASEP by duality. J. Stat. Phys. 142, 919–930 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kirillov A.N., Reshetikhin N.Y.: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum. J. Phys. A 20(6), 1565–1585 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  25. Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. In: Technical Report, Delft University of Technology and Free University of Amsterdam (1996)

  26. Lieb E.H.: The residual entropy of square ice. Phys. Rev. 162, 162–172 (1967)

    Article  ADS  Google Scholar 

  27. Mangazeev, V: On the Yang–Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014). arXiv:1401.6494

  28. Moreno Flores, G., Remenik, D., Quastel, J.: (2015, in preparation)

  29. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012). arXiv:0910.0069 [math.PR]

  30. O’Connell, N., Ortmann, J.: Tracy–Widom asymptotics for a random polymer model with gamma-distributed weights (2014). arXiv:1408.5326 [math.PR]

  31. O’Connell N., Yor M.: Brownian analogues of Burke’s theorem. Stoch. Proc. Appl. 96(2), 285–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Povolotsky A.: On integrability of zero-range chipping models with factorized steady state. J. Phys. A Math. Theor. 46, 465205 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Reshetikhin, N.: Lectures on the integrability of the 6-vertex model. In: Les-Houches Lecture Notes (2008). arXiv:1010.5031 [math.PR]

  34. Rogers L.C.G., Pitman J.W.: Markov functions. Ann. Probab. 9(4), 573–582 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schütz G.M.: Duality relations for asymmetric exclusion processes. J. Stat. Phys. 86, 1265–1287 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Seppäläinen T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40(1), 19–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834(3), 523–542 (2010) arXiv:1002.1879 [cond-mat.stat-mech]

  38. Sasamoto, T., Spohn, H.: Point-interacting Brownian motions in the KPZ universality class (2014). arXiv:1411.3142 [math.PH]

  39. Sasamoto T., Wadati M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31, 6057–6071 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Thimothée T., Le Doussal P.: Log-gamma directed polymer with fixed endpoints via the replica Bethe Ansatz. J. Stat. Mech. 2014(10), P10018 (2014)

    Article  Google Scholar 

  41. Tracy, C., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008). arXiv:0704.2633 [math.PR]. [Erratum: Commun. Math. Phys. 304, 875–878 (2011)]

  42. Tracy, C., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009). arXiv:0807.1713 [math.PR]

  43. Veto, B.: Tracy–Widom limit of q-Hahn TASEP (2014). arXiv:1407.2787 [math.PR]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Corwin.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corwin, I., Petrov, L. Stochastic Higher Spin Vertex Models on the Line. Commun. Math. Phys. 343, 651–700 (2016). https://doi.org/10.1007/s00220-015-2479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2479-5

Keywords

Navigation